The homoeobox is a 183 base-pair (bp) DNA sequence conserved in several Drosophila genes controlling segmentation and segment identity. Homoeobox sequences have been detected in the genome of species ranging from insects and anellids to vertebrates and homoeobox containing genes have been cloned from Xenopus, mouse and man. We recently isolated human homoeobox containing complementary DNA clones, that represent transcripts from four different human genes. One clone (HHO.c10) is selectively expressed in a 2.1 kilobase (kb) polyadenylated transcript in the spinal cord of human embryos and fetuses 5-10 weeks after fertilization. We report the characterization of a second cDNA clone, termed HHO.c13, that represents a new homoeobox gene. This clone encodes a protein of 255 amino-acid residues, which includes a pentapeptide, upstream of the homoeo domain, conserved in other Drosophila, Xenopus, murine and human homoeobox genes. By Northern analysis HHO.c13 detects multiple embryonic transcripts, which are differentially expressed in spinal cord, brain, backbone rudiments, limb buds and heart in 5-9-week-old human embryos and fetuses, in a striking organ- and stage-specific pattern. These observations suggest that in early mammalian development homoeobox genes may exert a wide spectrum of control functions in a variety of organs and body parts, in addition to the spinal cord.
Human CNTF is a neurocytokine that elicits potent neurotrophic effects by activating a receptor complex composed of the ligand‐specific alpha‐receptor subunit (CNTFR alpha) and two signal transducing proteins, which together constitute a receptor for leukemia inhibitory factor (LIFR). At high concentrations, CNTF can also activate the LIFR and possibly other cross‐reactive cytokine receptors in the absence of CNTFR alpha. To gain a better understanding of its structure‐function relationships and to develop analogs with increased receptor specificity, the cytokine was submitted to affinity maturation using phage display technology. Variants with greatly increased CNTFR alpha affinity were selected from a phage‐displayed library of CNTF variants carrying random amino acid substitutions in the putative D helix. Selected variants contained substitutions of the wild‐type Gln167 residue, either alone or in combination with neighboring mutations. These results provide evidence for an important functional role of the mutagenized region in CNTFR alpha binding. Affinity enhancing mutations conferred to CNTF increased potency to trigger biological effects mediated by CNTFR alpha and enhanced neurotrophic activity on chicken ciliary neurons. In contrast, the same mutations did not potentiate the CNTFR alpha‐independent receptor actions of CNTF. These CNTF analogs thus represent receptor‐specific superagonists, which should help to elucidate the mechanisms underlying the pleiotropic actions of the neurocytokine.
In March 2020, the World Health Organization declared the severe acute respiratory syndrome corona virus 2 (SARS-CoV2) infection to be a pandemic disease. SARS-CoV2 was first identified in China and, despite the restrictive measures adopted, the epidemic has spread globally, becoming a pandemic in a very short time. Though there is growing knowledge of the SARS-CoV2 infection and its clinical manifestations, an effective cure to limit its acute symptoms and its severe complications has not yet been found. Given the worldwide health and economic emergency issues accompanying this pandemic, there is an absolute urgency to identify effective treatments and reduce the post infection outcomes. In this context, phosphodiesterases (PDEs), evolutionarily conserved cyclic nucleotide (cAMP/cGMP) hydrolyzing enzymes, could emerge as new potential targets. Given their extended distribution and modulating role in nearly all organs and cellular environments, a large number of drugs (PDE inhibitors) have been developed to control the specific functions of each PDE family. These PDE inhibitors have already been used in the treatment of pathologies that show clinical signs and symptoms completely or partially overlapping with post-COVID-19 conditions (e.g., thrombosis, inflammation, fibrosis), while new PDE-selective or pan-selective inhibitors are currently under study. This review discusses the state of the art of the different pathologies currently treated with phosphodiesterase inhibitors, highlighting the numerous similarities with the disorders linked to SARS-CoV2 infection, to support the hypothesis that PDE inhibitors, alone or in combination with other drugs, could be beneficial for the treatment of COVID-19.
Acetylcholinesterase is expressed in chick dorsal root ganglia neurons very early in development. Since the physiological role of the enzyme in these cells is still obscure, it appeared of interest to investigate its modifications in the course of development. The specific activity of acetylcholinesterase in chick dorsal root ganglia increases, during in ovo development, from day E5 to day E13; after day E13 there is a decrease. Conversely, when acetylcholinesterase activity was expressed on a per ganglion basis, a continuous increase in the level of the enzyme until day E20 was observed. Acetylcholinesterase is a polymorphic enzyme and its molecular forms have different cellular localizations. Two globular forms, a tetramer (G4) and a dimer (G2), are present in the ganglia, as in chick brain. G4 is the major form at day E5, where it represents about 85% of the activity. This form shows a progressive decrease since day E8, and at day E20 exhibits activity levels similar to those of G2. It is known that acetylcholinesterase-producing cells are also able to release the enzyme in the extracellular space. We determined the release of acetylcholinesterase by cultured dorsal root ganglia neurons at various developmental stages: acetylcholinesterase release is significantly increased at day E20, as compared to younger stages, and 90% of the enzyme released is G4.
Neural stem progenitor cells (NSPCs) from E13.5 mouse embryos can be maintained in culture under proliferating conditions. Upon growth-factor removal, they may differentiate toward either neuronal or glial phenotypes or both. Exosomes are small extracellular vesicles that are part of the cell secretome; they may contain and deliver both proteins and genetic material and thus play a role in cell–cell communication, guide axonal growth, modulate synaptic activity and regulate peripheral nerve regeneration. In this work, we were interested in determining whether NSPCs and their progeny can produce and secrete extracellular vesicles (EVs) and if their content can affect cell differentiation. Our results indicate that cultured NSPCs produce and secrete EVs both under proliferating conditions and after differentiation. Treatment of proliferating NSPCs with EVs derived from differentiated NSPCs triggers cell differentiation in a dose-dependent manner, as demonstrated by glial- and neuronal-marker expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.