Two amino acid residues, His274 and Asp375, were replaced singly in the active site of pig citrate synthase (PCS) with Gly274, Arg274, Gly375, Asn375, Glu375, and Gln375. The nonmutant protein and the mutant proteins were expressed in and purified from Escherichia coli, and the effects of these amino acid substitutions on the overall reaction rate and conformation of the PCS protein were studied by initial velocity and full time course kinetic analysis, behavior during affinity column chromatography, and monoclonal antibody reactivity. Native and mutant proteins purified similarly had a subunit molecular weight of 50,000 and were homologous when examined with 10 independent a-PCS monoclonal IgGs or with a polyclonal anti-PHCS serum. No activity was detected for Asn375 or Gln375. The kcats of the other purified mutant proteins, however, were decreased by about 10(3) compared to the nonmutant enzyme activity. The Km for oxalacetate was decreased 10-fold in the Glu375 protein and was reduced by half in Gly274 and Arg274 PCSs, while the Km for acetyl-CoA was decreased 2-3-fold in Gly274, Arg274, and Gln375 PCSs. A mechanism is proposed that electrostatically links His274 and Asp375.
Replication protein A (RPA) is the predominant eukaryotic single-stranded DNA binding protein composed of 70, 34, and 14 kDa subunits. RPA plays central roles in the processes of DNA replication, repair, and recombination, and the p34 subunit of RPA is phosphorylated in a cellcycle-dependent fashion and is hyperphosphorylated in response to DNA damage. We have developed an in vitro procedure for the preparation of hyperphosphorylated RPA and characterized a series of novel sites of phosphorylation using a combination of in gel tryptic digestion, SDS-PAGE and HPLC, MALDI-TOF MS analysis, 2D gel electrophoresis, and phosphospecific antibodies. We have mapped five phosphorylation sites on the RPA p34 subunit and five sites of phosphorylation on the RPA p70 subunit. No modification of the 14 kDa subunit was observed. Using the procedures developed with in vitro phosphorylated RPA, we confirmed a series of phosphorylation events on RPA from HeLa cells that was hyperphosphorylated in vivo in response to the DNA damaging agents, aphidicolin and hydroxyurea.Replication protein A (RPA) 1 is the major eukaryotic single-stranded DNA (ssDNA) binding protein. RPA is a heterotrimeric protein composed of 70, 34, and 14 kDa subunits and was discovered as an essential component of the SV40 cell free DNA replication system (1, 2). RPA's role in DNA replication is to bind and stabilize ssDNA and to stimulate DNA polymerase α (3). Central roles have also been discovered in nucleotide excision repair, DNA mismatch repair, DNA recombination, and the nonhomologous end joining pathway for repair of DNA double strand breaks (4-8). RPA-coated ssDNA also appears to be a key structure for the activation of checkpoint signaling in response to DSBs and stalled DNA † This work was supported by Public Health Service Grant CA82741 and Grant CDMRP OC020223 to J.J.T. and Public Health Service Grants NS34782 and ES06096 and a research grant from the A-T Children's Project to K.D. 1 Abbreviations: RPA, replication protein A; XPA, xeroderma pigmentosum group A protein; ssDNA, single-stranded DNA; dsDNA, double-stranded DNA; CIP, calf intestinal phosphatase; PAGE, poly-acrylamide gel electrophoresis; OB, oligonucleotide/ oligosaccharide binding; DBD, DNA binding domain; CHCA, α-cyano-4-hydroxy cinnamic acid. (9,10). In all of these pathways, RPA binds to single-stranded regions of DNA and interacts with a variety of proteins that ultimately govern how genetic information is copied, repaired, and maintained. NIH Public AccessStructurally, RPA is composed of multiple homologous domains classified as oligonucleotide/oligosaccharide binding (OB) folds (11). The bulk of RPA's DNA binding activity has been attributed to two OB folds present in the central region of RPA-p70. These two DNA binding domains are termed DBD A and B and the structure of which has been solved by X-ray crystallography in the presence and absence of DNA (11,12). Evidence also suggests that the central domain of RPA-p34 and the C-terminal domain of RPA-p70, DBDs D and C, res...
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP–expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S–expressing cells but with a faster time course in the WT VSP–expressing cells. Inhibition by 150 μm Mg2+ was also significantly faster in the WT VSP–expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2–channel interactions.
Rhizobium strain BTAi 1, which nodulates both stems and roots of Aeschynomene indica L., formed bacteriochlorophyll and photosynthetic reaction centers resembling those of purple photosynthetic bacteria when grown aerobicaHly ex planta under a light-dark cycle. Bacteriochlorophyll formation was not observed under continuous dark or light growth conditions. The amount of pigment formed was similar to that previously found in aerobic photosynthetic bacteria. Stem nodules appear to fix nitrogen photosynthetically, as illumination of A. indica stem nodules with near-infrared light resulted in an enhanced rate of acetylene reduction. Near-infrared light did not enhance acetylene reduction when either A. indica or soybean root nodules were illuminated. The BTAi 1 isolate can be differentiated from members of the family Rhodospirillaceae by several criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.