Consumption of tomato products has been associated with decreased risk of some cancer types, and the tomato antioxidant, lycopene, is thought to play an important role in the observed health effects. In this study, four carotenoids, trans-lycopene, phytofluene, phytoene, and zeta-carotene, were quantified in tomato products. Samples of raw tomatoes, tomato juice after hot break scalder, and final paste were obtained from two different processing plants over two years. Comparison of carotenoid levels throughout processing indicated that lycopene losses during processing of tomatoes into final paste (25-30 degrees Brix) ranged from 9 to 28%. The initial Brix level of the raw tomatoes appeared to influence the amount of lycopene loss that occurred, possibly due to the differences in processing time required to achieve the final desired Brix level of the paste. In general, no consistent changes in the other carotenoids were observed as a function of processing. The antioxidant activity of fresh tomatoes, tomato paste, and three fractions obtained from these products (i.e., aqueous, methanol, and hexane fractions) was also determined. In both a free radical quenching assay and a singlet oxygen quenching assay, significant antioxidant activity was found in both the hexane fraction (containing lycopene) and the methanol fraction, which contained the phenolic antioxidants caffeic and chlorogenic acid. The results suggest that in addition to lycopene, polyphenols in tomatoes may also be important in conferring protective antioxidative effects.
Three anthocyanins were isolated from the acidified methanol extracts of UI 911 black beans (Phaseolus vulgaris L.) using solid phase extraction and preparative high-performance liquid chromatography . The anthocyanins were characterized using chromatographic and spectroscopic methods as delphinidin 3-glucoside (56%), petunidin 3-glucoside (26%), and malvidin 3-glucoside (18%). The monomeric anthocyanin content was 213 ± 2 mg/100 g of black beans (moisture content was 10.04 ± 0.02%). Keywords: Black beans; antioxidants; pigments; anthocyanins; electrospray ionization mass spectrometry
Seven commonly used frying oils and fats (beef tallow, canola oil, partially hydrogenated canola oil, corn oil, cottonseed oil, soybean oil, and partially hydrogenated soybean oil) were heated at two different temperatures (190 and 204 °C) for 8 h/day until they reached a critical level of polar constituents. Iodine value, color index, and the levels of polar compounds and of dimeric and polymeric triglycerides were monitored daily using AOCS official methods. In general, oils with higher levels of unsaturated fatty acids produced more polar compounds compared to the more saturated oils. Cottonseed oil had the fastest rate of formation of polar material and of polymeric triglycerides of oils heated at 204 °C while corn oil had the greatest yield of polar material and polymeric triglycerides at 190 °C. For all seven oils and fats, total polar material was highly (r ≥ 0.99) and significantly (P < 0.001) correlated with the dimeric and polymeric triglyceride content and also highly (r > 0.94 and r ≤ −0.97) and significantly (P < 0.001 for the majority of cases; P < 0.05 for the poorest correlation) with the color index and iodine value, respectively. Despite its significant correlations with total polar material, color index was not a reliable indicator of oil quality. Keywords: Frying oils; total polar material; polymeric triglycerides; iodine value; oil quality
Volatiles were obtained from commercially prepared and laboratory-prepared rice cakes using high-flow dynamic headspace isolation with Tenax trapping. Analysis was carried out by capillary GC/MS. More than 60 compounds were identified. Major volatiles included 1-hydroxy-2-propanone, furfuryl alcohol, 2, 5-dimethylpyrazine, 2-methylpyrazine, pyrazine, hexanal, furfural, pentanol, 3-hydroxy-2-butanone (acetoin), and ethyl-3, 6-dimethylpyrazine. Although not ideally applicable to a dry product, concentration/threshold ratios indicated that the compounds with a high probability of contributing to the aroma and flavor included 3-methylbutanal, dimethyl trisulfide, 2-ethyl-3,5-dimethylpyrazine, 4-vinylguaiacol, hexanal, (E,E)-2,4-decadienal, 2-methylbutanal, 2-acetyl-1-pyrroline, 1-octen-3-ol, and 1-octen-3-one.
The inhibitory activity of Curcuma longa L. (turmeric) rhizome constituents against sortase A, a bacterial surface protein anchoring transpeptidase, from Staphylococcus aureus ATCC 6538p was evaluated. The activity of the isolated compounds (1-4) was compared to that of the positive control,p-hydroxymecuribenzoic acid (pHMB). The biologically active components of C. longa rhizome were characterized by spectroscopic analysis as the curcuminoids curcumin (1), demethoxycurcumin (2), and bisdemethoxycurcumin (3). Curcumin was a potent inhibitor of sortase A, with an IC50 value of 13.8 +/- 0.7 microg/mL. Bisdemethoxycurcumin (IC50 = 31.9 +/- 1.2 microg/mL) and demethoxycurcumin (IC50 = 23.8 +/- 0.6 microg/mL) were more effective than pHMB (IC50 = 40.6 +/- 1.2 microg/mL). The three isolated compounds (1-3) showed no growth inhibitory activity against S. aureus strain Newman, with minimum inhibitory concentrations (MICs) greater than 200 microg/mL. Curcumin also exhibited potent inhibitory activity against S. aureus cell adhesion to fibronectin. The suppression of fibronectin-binding activity by curcumin highlights its potential for the treatment of S. aureus infections via inhibition of sortase activity. These results indicate that curcumin is a possible candidate in the development of a bacterial sortase A inhibitor.
Almond hulls (Nonpareil variety) were extracted with methanol and analyzed by reversed phase HPLC with diode array detection. The extract contained 5-O-caffeoylquinic acid (chlorogenic acid), 4-O-caffeoylquinic acid (cryptochlorogenic acid), and 3-O-caffeoylquinic acid (neochlorogenic acid) in the ratio 79.5:14.8:5.7. The chlorogenic acid concentration of almond hulls was 42.52 +/- 4.50 mg/100 g of fresh weight (n = 4; moisture content = 11.39%). Extracts were tested for their ability to inhibit the oxidation of methyl linoleate at 40 degrees C. At an equivalent concentration (10 microg/1 g of methyl linoleate) almond hull extracts had higher antioxidant activity than alpha-tocopherol. At higher concentrations (50 microg/1 g of methyl linoleate) almond hull extracts showed increased antioxidant activity that was similar to chlorogenic acid and morin [2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one] standards (at the same concentrations). These data indicate that almond hulls are a potential source of these dietary antioxidants. The sterols (3beta,22E)-stigmasta-5,22-dien-3-ol (stigmasterol) and (3beta)-stigmast-5-en-3-ol (beta-sitosterol) (18.9 mg and 16.0 mg/100 g of almond hull, respectively) were identified by GC-MS of the silylated almond hull extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.