With a three-dimensional (3D) momentum imaging technique, we investigated the laser desorption ionization dynamics initiated by both chirped picosecond and femtosecond pulses. 3D momentum images of desorbed ions from 2,5-dihydroxybenzoic acid (DHB), a common laser desorption matrix, were obtained for the first time. A striking difference was observed between the processes initiated by femtosecond and picosecond pulses. The lack of initial momentum in ions produced by femtosecond pulses suggests a suppression of plume formation, which can be exploited to increase the sensitivity of matrixassisted laser desorption ionization.
A camera-based three-dimensional (3D) imaging system with a superb time-of-flight (TOF) resolution and multi-hit capability was recently developed for electron/ion imaging [Lee et al. J. Chem. Phys. 141, 221101 (2014)]. In this work, we report further improvement of the event rate of the system by adopting an event-driven camera, Tpx3Cam, for detecting the 2D positions of electrons, while a high-speed digitizer provides highly accurate (˜30 ps) TOF information for each event at a rate approaching 1 Mhits/sec.
Achromatopsia is an inherited retinal disorder of cone photoreceptors characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. Approximately 50% of cases are caused by mutations in the cone photoreceptor-specific cyclic nucleotide gated channel beta subunit (CNGB3) gene. Studies in CNGB3-mutant dogs showed that subretinal injection of an AAV vector expressing human CNGB3, which has 76% amino acid identity with canine CNGB3, driven by a 2.1 kb human red cone opsin promoter (PR2.1) and packaged in AAV5 capsids (AAV5-PR2.1-hCNGB3) rescued cone photoreceptor function, but at high doses was associated with an inflammatory response (focal chorioretinitis) consistent with immune-mediated toxicity. AAV vectors containing the PR2.1 promoter packaged in AAV5 capsids and expressing either the native canine CNGB3 (AAV5-PR2.1-cCNGB3) or the human CNGB3 (AAV5-PR2.1-hCNGB3) were evaluated at different dose levels in CNGB3-mutant dogs. The vector expressing canine CNGB3 achieved somewhat better rescue of cone function but unexpectedly was associated with a greater degree of retinal toxicity than the vector expressing human CNGB3. Very low-level T-cell immune responses to some AAV or CNGB3 peptides were observed in animals that received the higher vector dose. There was a more than twofold increase in serum neutralizing antibodies to AAV in one of three animals in the low-dose group and in two of three animals in the high-dose group. No serum anti-hCNGB3 antibodies were detected in any animal. The results of this study do not support the hypothesis that the focal chorioretinitis seen with high doses of AAV5-PR2.1-hCNGB3 in the initial studies was due to an immune response to human CNGB3.
We report a new implementation of three-dimensional (3D) momentum imaging for electrons, employing a two-dimensional (2D) imaging detector and a silicon photomultiplier tube (siPMT). To achieve the necessary time resolution for 3D electron imaging, a poly(p-phenylene)-dye-based fast scintillator (Exalite 404) was used in the imaging detector instead of conventional phosphors. The system demonstrated an electron time-of-flight resolution comparable with that of electrical MCP pick-off (tens of picoseconds), while achieving an unprecedented dead time reduction (∼0.48 ns) when detecting two electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.