Введение. Качество автоматизированной системы управления полетами космических аппаратов (АСУ КА) зависит от воздействия на нее различных факторов риска. Источники факторов риска (ИФР) являются отправным пунктом при разработке механизмов обеспече-ния требуемого качества системы [1][2][3][4][5][6][7][8]. Многочисленность факторов риска и источников их возникновения требует выделения из их пол-ного состава основных факторов, в значительной мере влияющих на информационную устойчивость АСУ КА. Одним из подходов к клас-сификации ИФР для АСУ КА является использование бинарных от-ношений и математического аппарата теорий множеств. Такой под-ход позволяет выделить множество факторов риска, обладающих свойствами полноты, непротиворечивости и неизбыточности, а также определить механизмы их обнаружения и нейтрализации.Классификация источников факторов риска АСУ КА. Опре-деление множества факторов риска для качества функционирования АСУ КА базируется на рассмотрении ее предметной области. Содер-жательное описание предметной области АСУ КА включает такие основные понятия, как структура системы, входная, промежуточная и выходная информация. Качество АСУ КА определяется на основе анализа факторов риска на всех этапах ее жизненного цикла.
The problem of the quality of automated systems can be solved both from a common standpoint and from the standpoint of ensuring the quality of individual system components (software, information security tools, etc.). However, this leaves a number of particular questions due to the characteristics of a specific automated system. The occurrence of errors in the automated system for the preparation of aircraft flight data can lead to irreparable losses, the most damage is caused by design errors and incorrect general solutions implemented at the stage of system development. This necessitated the identification of specific principles of system design and development. The developed principles of designing an automated system consist, firstly, in determining its reference result, secondly, in identifying the main types of data and ensuring controlling their syntactic and semantic correctness, and, thirdly, in correct defining the boundaries of the system. The theoretical basis for the principles of the development of an automated system is the provisions of the systems approach, in particular, the new application of the system stratification tool. A typical automated data preparation system is considered as an example. It is shown that the use of the proposed principles allows avoiding or minimizing design errors and miscalculations and bringing the system representation stratification to a level that allows obtaining the necessary initial data and evaluating the quality indicators of the output data
The quality of development and commissioning the automated system for preparing aircraft flight data (ASPD) depends on many factors, among which it is necessary to identify and justify those most significantly affecting quality of the system being commissioned. The practice of designing an ASPD has shown that the quality assessment based on its characteristics is nothing more than a consequence. This situation is due to the presence of deeper factors that will only appear during the operation of the system. To eliminate this situation, the problem is formulated as a task of determining the factors affecting the quality of development and commissioning the system, based on the data obtained by mathematical processing of expert estimates of each factor significance. To solve this problem, it is proposed to use the hierarchy analysis method. Developed on its basis the methodological approach makes it possible: – to identify the main factors significantly affecting the quality of the ASPD being commissioned, and to propose qualitative scales for assessing the degree of feasibility of each generic criterion; – to formalize a multi-criteria indicator of the degree of the ASPD quality compliance with the requirements of generic criteria and obtain its dependence on the levels of development and commissioning the system; – to justify the requirements for ASPD operational suitability, perform its evaluation, as well as determine the necessary measures for implementing the specified requirements on operational and technical characteristics of the ASPD.
Введение. Под стойкостью автоматизированной системы управ-ления полетами космических аппаратов (АСУП КА) понимается свойство системы выполнять свои функции и сохранять свои пара-метры в пределах установленных значений во время и после воздей-ствия на нее факторов риска [1] в течение всего срока службы в за-данных условиях эксплуатации.Цель оценки стойкости функций безопасности -выявление сте-пени устойчивости АСУП КА, выступающей объектом оценки, по отношению к атакам нарушителя с определенно низким, умеренным или высоким потенциалом нападения [2][3][4][5][6].
Materials from the US sources on the Apollo program were considered, and the presented data were evaluated from the point of view of external ballistics equations, flights of spacecraft to the Moon and their return to the Earth. The evaluation made it possible to determine inconsistency of the data (mass characteristics) in different documents relating to one object in the Apollo 11 mission. Inconsistencies were also found in the ballistic schemes for launching into the departure trajectory to the Moon, mooning, undocking and docking in the lunar orbit, braking maneuver to enter the lunar orbit, acceleration maneuver for returning to the Earth and braking maneuver for landing on the Earth’s surface. Analysis of the lunar missions’ documents formed the basis to ask questions that were not previously raised in such a formulation, and no answers were given to them. In particular, significant discrepancies in the initial data were found in the official documents on the US lunar missions. Reference orbit altitude before the second activation of the Saturn-5 3rd stage, the first space velocity at the Florida peninsula inclination and the second space velocity seem to be strange. Significant doubts are caused by acceleration schedule, projection of the flight path to the Earth and remoteness of the first stage impact area from the launch pad. In terms of the F-1 engines of the Saturn-5 launch vehicle first stage, thrust indicators of one engine and the total thrust of the first stage are not consistent. A conclusion is made that at present it is almost impossible to put into practice some of the maneuvers demonstrated in the US documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.