A multistep diffusion-mediated process was developed to control the nucleation density, size, and lateral growth rate of WSe domains on c-plane sapphire for the epitaxial growth of large area monolayer films by gas source chemical vapor deposition (CVD). The process consists of an initial nucleation step followed by an annealing period in HSe to promote surface diffusion of tungsten-containing species to form oriented WSe islands with uniform size and controlled density. The growth conditions were then adjusted to suppress further nucleation and laterally grow the WSe islands to form a fully coalesced monolayer film in less than 1 h. Postgrowth structural characterization demonstrates that the WSe monolayers are single crystal and epitaxially oriented with respect to the sapphire and contain antiphase grain boundaries due to coalescence of 0° and 60° oriented WSe domains. The process also provides fundamental insights into the two-dimensional (2D) growth mechanism. For example, the evolution of domain size and cluster density with annealing time follows a 2D ripening process, enabling an estimate of the tungsten-species surface diffusivity. The lateral growth rate of domains was found to be relatively independent of substrate temperature over the range of 700-900 °C suggesting a mass transport limited process, however, the domain shape (triangular versus truncated triangular) varied with temperature over this same range due to local variations in the Se/W adatom ratio. The results provide an important step toward atomic level control of the epitaxial growth of WSe monolayers in a scalable process that is suitable for large area device fabrication.
Chemical doping constitutes an effective route to alter the electronic, chemical, and optical properties of two-dimensional transition metal dichalcogenides (2D-TMDs). We used a plasma-assisted method to introduce carbon-hydrogen (CH) units into WS2 monolayers. We found CH-groups to be the most stable dopant to introduce carbon into WS2, which led to a reduction of the optical bandgap from 1.98 to 1.83 eV, as revealed by photoluminescence spectroscopy. Aberration corrected high-resolution scanning transmission electron microscopy (AC-HRSTEM) observations in conjunction with first-principle calculations confirm that CH-groups incorporate into S vacancies within WS2. According to our electronic transport measurements, undoped WS2 exhibits a unipolar n-type conduction. Nevertheless, the CH-WS2 monolayers show the emergence of a p-branch and gradually become entirely p-type, as the carbon doping level increases. Therefore, CH-groups embedded into the WS2 lattice tailor its electronic and optical characteristics. This route could be used to dope other 2D-TMDs for more efficient electronic devices.
LiDAR odometry and mapping (LOAM) has been playing an important role in autonomous vehicles, due to its ability to simultaneously localize the robot's pose and build high-precision, high-resolution maps of the surrounding environment. This enables autonomous navigation and safe path planning of autonomous vehicles. In this paper, we present a robust, real-time LOAM algorithm for LiDARs with small FoV and irregular samplings. By taking effort on both frontend and back-end, we address several fundamental challenges arising from such LiDARs, and achieve better performance in both precision and efficiency compared to existing baselines. To share our findings and to make contributions to the community, we open source our codes on Github 1 .
A defect-controlled approach for the nucleation and epitaxial growth of WSe2 on hBN is demonstrated. The WSe2 domains exhibit a preferred orientation of over 95%, leading to a reduced density of inversion domain boundaries (IDBs) upon coalescence. First-principles calculations and experimental studies as a function of growth conditions and substrate pretreatment confirm that WSe2 nucleation density and orientation are controlled by the hBN surface defect density rather than thermodynamic factors. Detailed transmission electron microscopy analysis provides support for the role of single-atom vacancies on the hBN surface that trap W atoms and break surface symmetry leading to a reduced formation energy for one orientation of WSe2 domains. Through careful control of nucleation and extended lateral growth time, fully coalesced WSe2 monolayer films on hBN were achieved. Low-temperature photoluminescence (PL) measurements and transport measurements of back-gated field-effect transistor devices fabricated on WSe2/hBN films show improved optical and electrical properties compared to films grown on sapphire under similar conditions. Our results reveal an important nucleation mechanism for the epitaxial growth of van der Waals heterostructures and demonstrate hBN as a superior substrate for single-crystal transition-metal dichalcogenide (TMD) films, resulting in a reduced density of IDBs and improved properties. The results motivate further efforts focused on the development of single crystal hBN substrates and epilayers for synthesis of wafer-scale single crystal TMD films.
Dilute magnetic semiconductors (DMS), achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional (2D) systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here, room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation, is described. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of˜2 at% and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry, and first-principles calculations. Room-temperature 2D-DMS provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures into the realm of practical application.
Structural defects govern various physical, chemical, and optoelectronic properties of two-dimensional transition-metal dichalcogenides (TMDs). A fundamental understanding of the spatial distribution and dynamics of defects in these low-dimensional systems is critical for advances in nanotechnology. However, such understanding has remained elusive primarily due to the inaccessibility of (a) necessary time scales via standard atomistic simulations and (b) required spatiotemporal resolution in experiments. Here, we take advantage of supervised machine learning, in situ high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations to overcome these limitations. We combine genetic algorithms (GA) with MD to investigate the extended structure of point defects, their dynamical evolution, and their role in inducing the phase transition between the semiconducting (2H) and metallic (1T) phase in monolayer MoS. GA-based structural optimization is used to identify the long-range structure of randomly distributed point defects (sulfur vacancies) for various defect densities. Regardless of the density, we find that organization of sulfur vacancies into extended lines is the most energetically favorable. HRTEM validates these findings and suggests a phase transformation from the 2H-to-1T phase that is localized near these extended defects when exposed to high electron beam doses. MD simulations elucidate the molecular mechanism driving the onset of the 2H to 1T transformation and indicate that finite amounts of 1T phase can be retained by increasing the defect concentration and temperature. This work significantly advances the current understanding of defect structure/evolution and structural transitions in 2D TMDs, which is crucial for designing nanoscale devices with desired functionality.
The present study establishes a new perspective for the use of ischemically altered livers from nonheartbeating donors for organ transplantation under clinical circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.