Pharmacological blockade of either D1 or D2 dopamine (DA) receptors prevents damage of striatal DA terminals by repeated doses of methamphetamine (m-AMPH). Because the substantial DA overflow produced by multiple m-AMPH treatments appears to contribute to the subsequent injury, we have investigated the effects of blockade of D1 or D2 receptors on m-AMPH-induced DA efflux using in vivo microdialysis. Four treatments with m-AMPH (4 mg/kg, s.c., 2-h intervals) produced large increases in striatal DA overflow, with particularly marked overflow (10 times the basal values) following the fourth injection. Administered by themselves, four injections of the D1 antagonist SCH 23390 or the D2 antagonist eticlopride (0.5 mg/kg, i.p., 2-h intervals) significantly increased striatal DA overflow. However, treatment with either SCH 23390 or eticlopride 15 min before each of four m-AMPH injections attenuated the marked DA peak otherwise seen after the fourth m-AMPH injection. These effects on DA overflow were related to subsequent DA depletions. Although our m-AMPH regimen produced a 54% reduction in striatal DA tissue content 1 week later, pretreatments with either the D1 or the D2 antagonist completely prevented subsequent DA content depletions. Furthermore, the DA content of striatal tissue remaining 1 week after m-AMPH treatment was significantly correlated with the magnitude of the cumulative DA overflow during the m-AMPH treatment (r = -0.69). Thus, the extensive DA overflow seen during neurotoxic regimens of m-AMPH appears critical to the subsequent neurotoxicity, and the neuroprotective action of DA receptor antagonists seems to result from their attenuation of stimulant-induced DA overflow.
Repeated administration of methamphetamine (m-AMPH) to rats induces dopamine (DA) terminal damage, and coadministration of antagonists of the N-methyl-D-aspartate (NMDA) or dopamine D1 or D2 receptors are protective. Striatal microdialysis of rats given a neurotoxic regimen of 4 x m-AMPH (4 mg/kg, s.c.) treatments revealed a dramatic and prolonged elevation of extracellular DA after the final m-AMPH administration. Neuroprotective regimens of MK-801, SCH 23390, or eticlopride greatly attenuated the overflow of DA resulting from the fourth m-AMPH treatment. By itself, MK-801 had no significant influence on striatal DA overflow, whereas either DA antagonist given alone elevated dialysate DA concentrations. A significant correlation was found between the magnitude of the m-AMPH-induced DA overflow of individual microdialyzed rats and their striatal DA content at sacrifice one week later. We conclude that the ability of non-competitive NMDA antagonists and of the D1 or D2 antagonists to protect against m-AMPH-induced striatal DA terminal injury can be accounted for by their attenuation of m-AMPH-evoked DA overflow. These findings underscore the important role played by elevated extracellular DA concentrations to the injurious effects of this stimulant drug.
Parkinson's disease (PD) and Alzheimer's disease (AD) may share certain abnormalities since a subset of PD patients suffer from dementia, and some AD individuals show extrapyramidal symptoms. In vitro quantitative autoradiography was used to examine different subtypes of excitatory amino acid (EAA) receptors (NMDA, KA, and AMPA) and dopamine transporter sites in the striatum (caudate, putamen) and nucleus accumbens (NAc) from idiopathic PD, pure AD, and mixed PD/AD patients. PD and AD groups, and to a lesser extent the PD/AD groups, showed substantially increased binding to NMDA receptors in the striatum and NAc. No statistically significant changes in binding to KA and AMPA receptors were found in any patient group. 3H-mazindol binding to dopamine transporter sites was significantly decreased in the striatum and NAc of PD and PD/AD patients, but only in the putamen and NAc of AD patients. The data indicate that (1) the majority of striatal EAA receptors are not located on dopaminergic nigrostriatal nerve terminals, and (2) elevated binding to striatal NMDA receptors correlates with binding to dopamine transporter sites in PD patients, but not in AD and PD/AD individuals. Thus, the mechanisms of NMDA receptor changes in the striatum of AD and PD patients may be different. However, it is postulated that increased binding to NMDA receptors in Parkinson and Alzheimer striatum occurs in response to an insult(s) within the striatothalamocortical circuits and that this may contribute to the clinical similarities described for subsets of PD and AD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.