Background: An accurate estimation of the risk of life-threatening (LT) ventricular tachyarrhythmia (VTA) in patients with LMNA mutations is crucial to select candidates for implantable cardioverter defibrillator (ICD) implantation. Methods: We included 839 adult patients with LMNA mutations, including 660 from a French nationwide registry in the development sample, and 179 from other countries, referred to 5 tertiary centers for cardiomyopathies, in the validation sample. LTVTA was defined as a) sudden cardiac death or b) ICD-treated or hemodynamically unstable VTA. The prognostic model was derived using Fine-Gray's regression model. The net reclassification was compared with current clinical practice guidelines. The results are presented as means (standard deviation) or medians [interquartile range]. Results: We included 444 patients 40.6 (14.1) years of age in the derivation sample and 145 patients 38.2 (15.0) years in the validation sample, of whom 86 (19.3%) and 34 (23.4%) suffered LTVTA over 3.6 [1.0-7.2] and 5.1 [2.0-9.3] years of follow-up, respectively. Predictors of LTVTA in the derivation sample were: male sex, non-missense LMNA mutation, 1st degree and higher atrioventricular block, non-sustained ventricular tachycardia, and left ventricular ejection fraction. In the derivation sample, C-index (95% CI) of the model was 0.776 (0.711-0.842) and calibration slope 0.827. In the external validation sample, the C-index was 0.800 (0.642-0.959) and calibration slope 1.082 (95% CI, 0.643-1.522). A 5-year estimated risk threshold ≥7% predicted 96.2% of LTVTA and net reclassified 28.8% of patients with LTVTA compared with the guidelines-based approach. Conclusions: Compared to the current standard of care, this risk prediction model for LTVTA in laminopathies facilitated significantly the choice of ICD candidates. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique Identifier: NCT03058185.
In cyclic females, FSH stimulates ovarian estradiol (E2) production and follicular growth up to the terminal stage. A transient elevation in circulating FSH and E2 levels occurs shortly after birth. But what could be the action of FSH on the ovary during this period, and in particular how it stimulates ovarian steroidogenesis without supporting terminal follicular maturation is intriguing. By experimentally manipulating FSH levels, we demonstrate in mice that the mid-infantile elevation in FSH is mandatory for E2 production by the immature ovary, but that it does not stimulate follicle growth. Importantly, FSH increases aromatase expression to stimulate E2 synthesis, however it becomes unable to induce cyclin D2, a major driver of granulosa cell proliferation. Besides, although FSH prematurely induces luteinizing hormone (LH) receptor expression in granulosa cells, LH pathway is not functional in these cells to induce their terminal differentiation. In line with these results, supplying infantile mice with a superovulation regimen exacerbates E2 production, but it does not stimulate the growth of follicles and it does not induce ovulation. Overall, our findings unveil a regulation whereby high postnatal FSH concentrations ensure the supply of E2 required for programming adult reproductive function without inducing follicular maturation before puberty.
We have previously demonstrated that differentiation of hypothalamic dopaminergic (DA) neurons can be induced in culture by their pituitary intermediate lobe target cells, through both membrane and diffusible factors. We also showed that subpopulations of DA neurons from the arcuate nucleus only, not the periventricular area, can respond to the target. Here we investigated the possibility that both neuronal subsets could also respond differentially to brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT3). Addition of NT3, but not BDNF, enhanced growth and branching of neurites, tyrosine hydroxylase (TH) as well as increasing levels of cultured arcuate DA neurons. Conversely, BDNF, but not NT3, affected the same parameters in cultured periventricular DA neurons. The neurotrophins thus affect DA neurons in a structure and neuronal type-selective manner, since general neuronal markers were not affected by either neurotrophin. Neurotrophin effects were reversed by addition of specific antibodies directed against them or their respective receptors, TrkB or TrkC. By themselves, the antibodies inhibited development of DA neurons below that of control cultures, suggesting involvement of endogenous neurotrophins. BDNF and NT3 were indeed found in both arcuate and periventricular neurons and in the intermediate lobe. BDNF was always present as the mature peptide. The mature form of NT3 was only detected in the periventricular area; a precursor-like heavier form was present in all tissues studied. The present data suggest that NT3, but not BDNF, could participate in the differentiating action of intermediate lobe cells on arcuate DA neurons.
Hypophysiotropic somatostatin (SRIF) and growth hormone-releasing hormone (GHRH) neurons are primarily involved in the neurohormonal control of growth hormone (GH) secretion. They are located in periventricular (PEV) and arcuate (ARC) hypothalamic nuclei, respectively, but their connectivity is not well defined. To better understand the neuronal network involved in the control of GH secretion, connections from PEV to ARC neurons were reconstructed in vitro and neuronal phenotypes assessed by single-cell multiplex RT-PCR. Of 814 stimulated PEV neurons, monosynaptic responses were detected in only 45 ARC neurons. Monosynaptic excitatory currents were detected in 29 ARC neurons and inhibitory currents in 16, indicating a 2/1 ratio for excitatory versus inhibitory connections. Galanin (GAL), NPY, pro-opiomelanocortin (POMC), and SRIF mRNAs were detected in neurons from both nuclei but GHRH mRNA almost exclusively in ARC. Among the five SRIF receptors, only sst1 and sst2 were expressed, in 94% of ARC and 59% of PEV neurons, respectively. Of 128 theoritical combinations between neuropeptides and sst receptors, only 22 were represented in PEV and 25 in ARC. For PEV neurons, neuropeptide phenotypes did not influence excitatory connections. However, the occurrence of presynaptic sst receptors on GAL and SRIF PEV neurons significantly increased their probability of connection to ARC neurons. GHRH ARC neurons expressing sst2, but not sst1, receptors were always connected with PEV neurons. Physiological responses to sst1 (CH-275) or sst2 (Octreotide) agonists were always correlated with the detection of respective sst mRNAs. In conclusion, 1) SRIF-modulated excitatory transmission develops in vitro from PEV to ARC neurons, 2) ARC GHRH neurons bearing sst2 receptors appears directly controlled by fast glutamatergic transmission from PEV neurons simultaneously expressing one to four neuropeptides, 3) GHRH neurons bearing sst1 receptors lack this control, and 4) these results suggest that fast excitatory neurotransmission and neuropeptide modulation can derive from a small subset of PEV hypothalamic neurons targeted at ARC neuronal subpopulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.