Local heat-transfer coefficients were experimentally mapped along the midchord of a five-times-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, which change color with temperature, and a heater sheet made of a carbon-impregnated paper, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat-transfer coefficients were mapped over the airfoil surface. The local heat-transfer coefficients are presented for Reynolds numbers from 2.8×105 to 7.6×105. Comparisons are made with analytical values of heat-transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading-edge separation bubble was revealed by thermal and flow visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.