SUMMARYCommercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presentee.
Various flow visualization techniques were used to define the secondary flows near the endwall in a large scale turbine vane cascade. The cascade was scaled up from one used to generate endwall heat transfer data under a joint NASA-USAF contract. A comparison of the visualized flow patterns and the measured Stanton number distributions was made for cases where the inlet Reynolds number and exit Mach number were matched. Flows were visualized by using neutrally buoyant helium-filled soap bubbles, by using smoke from oil soaked cigars, and by a new technique using permanent marker pen ink dots and synthetic wintergreen oil. For the first time, details of the horseshoe vortex and secondary flows can be directly compared with heat transfer distributions. Near the cascade entrance, there is an obvious correlation between the two sets of data, but well into the passage the effect of secondary flow is not as obvious.
Local heat-transfer coefficients were experimentally mapped along the midchord of a five-times-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, which change color with temperature, and a heater sheet made of a carbon-impregnated paper, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat-transfer coefficients were mapped over the airfoil surface. The local heat-transfer coefficients are presented for Reynolds numbers from 2.8×105 to 7.6×105. Comparisons are made with analytical values of heat-transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading-edge separation bubble was revealed by thermal and flow visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.