This study presents a numerical simulation through computational fluid dynamics on mixing and flow structures in convergent-divergent micromixer with a triangular obstacle. The main concept in this design is to enhance the interfacial area between the two fluids by creating a transverse flow and split, and recombination of fluids flow due to the presence of obstacles. The effect of triangular obstacle size, the number of units, changing the position of an obstacle in the mixing channel and operational parameter like the Reynolds number on the mixing efficiency and pressure drop are assessed. The results indicate that at inlet Reynolds numbers below 5, the molecular diffusion is the most important mechanism of mixing, and the mixing index is almost the same for all cases. By increasing the inlet Reynolds number above 5, mixing index increases dramatically, due to the secondary flows. Based on the simulation results, due to increasing the effect of dean and separation vortices as well as more recirculation of flow in the side branches and behind the triangular obstacle, the highest mixing index is obtained at the aspect ratio of 2 for the triangular obstacle and its position at the front of the mixing unit. Also the highest value of mixing index is obtained by six unit of mixing chamber. The effect of changing the position of the obstacle in the channel and changing the aspect ratio of the obstacle is evident in high Reynolds numbers. An increase in the Reynolds number in both cases (changing the aspect ratio and position of the obstacle) leads to pressure drop increases.
Polycaprolactone nanoparticles (PCL NPs) were produced by a liquid nonsolvent nanoprecipitation process in a flow‐focusing microfluidic device and optimized in terms of particle size, polydispersity index (PDI), and zeta potential ζ. The effects of flow rate ratio (FRR), total flow rate (TFR), the organic solvents tetrahydrofuran and dimethylformamide (DMF), the surfactants polyvinyl alcohol and Tween 80, and polymer molecular weight on the size, PDI, and ζ of PCL NPs were investigated. A stability study was performed to compare the effect of the surfactants on the characteristics of PCL NPs over 7 d. The smallest particles are produced at the highest FRR, TFR, and polymer molecular weight and lowest polymer concentration in DMF. The presence of both surfactants results in smaller NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.