Globally, many crop production areas are threatened by drought and salinity. Potato (Solanum tuberosum L.) is susceptible to these challenging environmental conditions. In this study, an in vitro approach was employed to compare the tolerance of potato cultivars ‘BARI-401’ (red skin) and ‘Spunta’ (yellow skin). To simulate ionic and osmotic stress, MS media was supplemented with lithium chloride (LiCl 20 mM) and mannitol (150 mM). GC-MS and spectrophotometry techniques were used to determine metabolite accumulation. Other biochemical properties, such as total phenols concentration (TPC), total flavonoids concentration (TFC), antioxidant capacity (DPPH free radical scavenging capacity), polyphenol oxidase (PPO), and peroxidase (POD) activities, were also measured. The two cultivars respond differently to ionic and osmotic stress treatments, with Spunta accumulating more defensive metabolites in response, indicating a higher level of tolerance. While further investigation of the physiological and biochemical responses of these varieties to drought and salinity is required, the approach taken in this paper provides useful information prior to open field evaluation.
Globally, drought and salinity stress critically constrain potato (Solanum tuberosum L.) production. Considering the impact of these stresses on crops and increasing food demand, insight into both tolerance and susceptibility is essential. The present study screens two potato cultivars, BARI-401 and Spunta, for their tolerance to simulated salinity and drought by in vitro LiCl and mannitol exposure. Plantlets treated with a range of LiCl (0, 10, 30, and 40 mM) and mannitol (0, 50, 100, 200, and 250 mM) concentrations were biochemically and physiologically characterized to assess their tolerance capacity. Shoot number, shoot length, root number, and root length were affected in both cultivars under higher LiCl and mannitol concentrations, even though Spunta was able to better maintain a higher shoot length under the 40 mM of LiCl and 250 mM of mannitol compared to BARI-401. The total phenol contents (TPC) in both cultivars were increased at the highest treatment concentration and the total flavonoids content (TFC) was decreased in BARI-401 as compared to Spunta. Higher free radical scavenging capacity (FRSC, low IC50 value) was recorded in Spunta as compared to BARI-401 with increasing treatment concentrations, which supports the high antioxidant capacity of Spunta. An inverse correlation between polyphenol oxidase (PPO) and TPC was noted in both cultivars. Peroxidase dismutase (POD) activity was increased significantly in both cultivars for all treatments, but activity was highest overall in Spunta. These physiological and biochemical analyses of both cultivars suggest that cultivar Spunta is more tolerant to salinity and drought stress. Further open-field experiments are required to confirm these results.
The aim of the study was to isolate and identify the most salt-tolerant endophytic bacteria from the mangrove plants (Avicennia marina) from the Red Sea Jeddah coastal region. In total, 21 endophytic bacteria were isolated from various parts of Avicennia marina cultured under various salt concentrations in laboratory conditions. Out of 21 endophytes, one isolate was selected based on its salt tolerance capacity, the isolate was identified as Bacillus halotolerans using 16S rRNA sequencing. The nucleotide sequence has been deposited under accession number MT858957. Bacillus halotolerans ymk 021 grows under high salinity and temperature. In response to high salinity stress (550 mM) mung bean (Vigna radiata L.) treated with B. halotolerans ymk021 showed significant results in morphological characteristics like fresh root and shoot weight, dry root and shoot weight, and root and shoot length. The ability of this salt-tolerant bacterial endophyte to produce antioxidants in plant may also resolve the major issue of oxidative damage during salinity stress. It may produce antibiotics, essential industrial enzymes too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.