Chemical methods for the synthesis of short deoxyribooligonucleotides containing methyl and phenylphosphonodiester linkages have been developed. The interaction of two such nonionic dinucleotide analogs, T(pCH3)T and T(pC6H5)T, with several enzymes has been investigated. Because of the phosphonate linkage each dinucleotide exists as a diastereomeric pair as shown by thin layer chromatography and enzymatic studies. Both isomers of each dinucleotide can be phosphorylated by T4-polynucleotide kinase in the presence of [gamma-32P]ATP. Only one of the diastereoisomers of each dinucleotide is slowly hydrolyzed by snake venom phosphodiesterase and acts as an inhibitor of the enzyme-catalyzed hydrolysis of 5'-labeled oligothymidylic acid. Both isomers of each dinucleotide analog are completely resistant to hydrolysis by spleen phosphodiesterase.
Three monoclonal anti-alpha antibodies were used to study the properties of the alpha subunit of Escherichia coli RNA polymerase. None of the monoclonal antibodies inhibited the d(A-T)n-directed synthesis of r(A-U)n. Reassembly of the RNA polymerase core was blocked by mAb 129C4 or mAb 126C6 while no effect was observed with mAb 124D1. The conversion of premature to mature core was partially inhibited by mAb 129C4 and almost totally inhibited by mAb 126C6. The data suggest that during the course of core assembly at least one of the alpha subunits undergoes conformational changes. The increase in affinity of mAb 126C6 for assembled alpha compared with free alpha also implies that alpha undergoes conformational changes during RNA polymerase assembly. Double antibody binding studies showed that the epitopes for mAb 124D1 and mAb 129C4 are available on only one of the alpha subunits in RNA polymerase. It would appear that the relevant domain on one of the alpha subunits in RNA polymerase is well exposed whereas this domain on the second alpha subunit is shielded by interaction with regions of the large beta and beta' subunits. The alpha domain in which the epitope for mAb 126C6 resides is not impeded by subunit interactions in the RNA polymerase. The data obtained also suggest that in the holoenzyme the sigma subunit may be positioned close to one of the alpha subunits, probably to the more exposed alpha. The alpha beta complex is the minimal stable subassembly since one of the alpha subunits dissociates from the alpha 2 beta complex following binding of any of the monoclonal antibodies studied.(ABSTRACT TRUNCATED AT 250 WORDS)
The synthesis of a self-complementary octanucleotide, d(G-G-T-T-A-A-C-C-), using a modified triester approach is described. The protected dinucleotides, d(Me2O)TribG(C1C6H4) ibG, d(Me2O)TrT(ClC6H4)T, d(Me2O)TrbzA(ClC6H4)bzA, and d(Me2O)TranC(ClC6H4)anC were synthesized by a one step triester procedure. After removal of the trityl group, the dinucleotides, dT(ClC6H4)T and danC (ClC6H4)anC were coupled to d(Me2O)TribG(ClC6H4)ibG and d(Me2O)TrbzA(ClC6H4)bzA, respectively to yield the respective tetranucleotides. The tetranucleotide, d(Me2O)TrbzA(ClC6H4)bzA(ClC6H4) and (ClC6H4)anC was detritylated and then coupled with d(Me2O)TribG(ClC6H4)ibG(ClC6H4)T(Cl6H4)T to give octanucleotide. The fully protected octanucleotide was deblocked by treatment with aqueous NH3 followed by acid and was characterized by nucleotide sequence analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.