By exploiting the correlation of ultrasound speckle patterns that result from scattering by underlying tissue elements, two-dimensional tissue motion theoretically can be recovered by tracking the apparent movement of the associated speckle patterns. Speckle tracking, however, is an ill-posed inverse problem because of temporal decorrelation of the speckle patterns and the inherent low signal-to-noise ratio of medical ultrasonic images. This paper investigates the use of an adaptive deformable mesh for nonrigid tissue motion recovery from ultrasound images. The nodes connecting the mesh elements are allocated adaptively to stable speckle patterns that are less susceptible to temporal decorrelation. We use the approach of finite element analysis in manipulating the irregular mesh elements. A novel deformable block matching algorithm, making use of a Lagrange element for higher-order description of local motion, is proposed to estimate a nonrigid motion vector at each node. In order to ensure that the motion estimates are admissible to a physically plausible solution, the nodal displacements are regularized by minimizing the strain energy associated with the mesh deformations. Experiments based on ultrasound images of a tissue-mimicking phantom and a muscle undergoing contraction, and on computer simulations, have shown that the proposed algorithm can successfully track nonrigid displacement fields.
By exploiting the correlation of ultrasound speckle patterns that result from scattering by underlying tissue elements, 2D tissue motion can be theoretically recovered by tracking the apparent movement of the speckle patterns. Speckle tracking, however, is an ill-posed inverse problem because of temporal decorrelation of the speckle patterns and the inherent low signal-to-noise ratio of medical ultrasonic images. This paper investigates the use of an adaptive deformable mesh for non-rigid tissue motion recovery from ultrasound images. The nodes connecting the mesh elements are allocated adaptively to stable speckle patterns that are less susceptible to temporal decorrelation. We use the approach of finite element analysis in manipulating the irregular mesh elements. A novel deformable block matching algorithm, making use of a Lagrange element for higher-order description of local motions, is proposed to estimate a non-rigid motion vector at each node. In order to ensure that the motion estimates are admissible to a physically plausible solution, the nodal displacements are regularized by minimizing the strain energy of the mesh deformations. Experiments based on ultrasound images of muscle contraction and on computer simulations have shown that the proposed algorithm can successfully track non-rigid displacement fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.