The site-specific binding of the potent and selective nucleoside transport inhibitor, [3H]nitrobenzylthioinosine (NBMPR), to the nucleoside transport system of cardiac membranes of several species was investigated. The affinity of [3H]NBMPR for these sites ranged from 0.03 nM in rat to 0.78 nM in dog. The maximal binding capacity of cardiac membranes for [3H]NBMPR was also species dependent and was greatest in bovine and guinea pig heart (2551 and 1700 fmol/mg protein, respectively) and least in rat (195 fmol/mg protein). The affinities of recognized nucleoside transport inhibitors and benzodiazepines for these transport inhibitory sites in guinea pig and rat heart were estimated by studying the inhibition of the site-specific binding of [3H]NBMPR in competition experiments. These values were compared with their inhibitory effects on the transporter-dependent accumulation of [3H]adenosine in guinea pig and rat cardiac muscle segments and with their ability to potentiate the negative inotropic action of adenosine in electrically driven guinea pig and rat left atria. In guinea pig heart, the recognized nucleoside transport inhibitors and benzodiazepines had an order of affinity (dilazep greater than hydroxynitrobenzylthioguanosine greater than dipyridamole greater than hexobendine much greater than lidoflazine much greater than flunitrazepam greater than diazepam greater than lorazepam greater than flurazepam) for the NBMPR site which was similar to those for the inhibition of [3H]adenosine accumulation and for potentiation of adenosine action. In contrast, in rat heart, where the maximal binding capacity of [3H]NBMPR was lower (eightfold), the nucleoside transporter dependent accumulation of [3H]adenosine was also lower (sixfold) and the negative inotropic action of adenosine was not significantly potentiated.(ABSTRACT TRUNCATED AT 250 WORDS)
Binding studies using the alkylating benzodiazepine kenazepine strongly suggest the existence of several populations of benzodiazepine receptors in the CNS. Kenazepine reacts noncompetitively and irreversibly with some receptors and competitively (reversibly) with others. Cerebellum contains the largest proportion (approx. 80%) of the noncompetitive type, while hippocampus and cortex contain a preponderance of competitive-type receptors (approx. 80 and 50%, respectively). The Hill coefficients for kenazepine are approx. 0.7 in cortex and cerebellum, and near unity in dorsal hippocampus. Different populations of benzodiazepine receptors may mediate different physiologic and pharmacologic effects in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.