Inorganic nanoparticles (NPs) show great potential for medicinal therapy. However, biocompatibility studies are essential to determine if they are safe. Here, five different NPs are compared for their cytotoxicity, internalization, aggregation in medium, and reactive oxygen species (ROS) production, using tumoral and normal human blood cells. Differences depending on the cell type are analyzed, and no direct correlation between ROS production and cell toxicity is found. Results are discussed with the aim of standardizing the procedures for the evaluation of the toxicity.
The organization of the visual system of larval lampreys was studied by anterograde and retrograde transport of HRP injected into the eye. The retinofugal system has two different patterns of organization during the larval period. In small larvae (less than 60-70 mm in length) only a single contralateral tract, the axial optic tract, is differentiated. This tract projects to regions in the diencephalon, pretectum, and mesencephalic tegmentum. In larvae longer than 70-80 mm, there is an additional contralateral tract, the lateral optic tract, which extends to the whole tectal surface. In addition, ipsilateral retinal fibers are found in both small and large larvae. Initially, the ipsilateral projection is restricted to the thalamus-pretectum, but it reaches the optic tectum in late larvae. Changes in the organization of the optic tracts coincide with the formation of the late-developing retina and consequently, the origin of the optic tracts can be related to specific retinal regions. The retinopetal system is well developed in all larvae. Most retinopetal neurons are labeled contralaterally and are located in the M2-M5 nucleus of the mesencephalic tegmentum, in the caudolateral mesencephalic reticular area and adjacent ventrolateral portions of the optic tectum. Dendrites of these cells are apparent, especially those directed dorsally, which in large larvae extend to the optic tectum overlapping with the retino-tectal projection. These results indicate that in lampreys, visual projections organize mainly during the blind larval period before the metamorphosis, their development being largely independent of visual function.
The medullary and spinal connections of the trigeminal nerve of larval sea lampreys Petromyzon marinus were studied by anterograde and retrograde HRP transport after application into the orbit. Three components were found, all of them ipsilateral: 1) The motor nucleus was undivided in the larva, and its neurons possessed a rich dendritic tree. The single motor root was well separated from the sensory root. 2) The descending root was laterally located, and its fibers ran compactly to spinal levels. 3) Most medullary and many rostral spinal dorsal cells were labeled. Dorsal cells, which were mostly multipolar, had numerous mutual contacts. Some dorsal cell processes contacted the fourth ventricle. The name "primary medullary and spinal nucleus of the trigeminal nerve" (PMSV) is proposed for these dorsal cells. Medullary dorsal cells were not labeled by applying HRP at the level of spinal nerves, but application to the vagus nerve did label some. The possible relationship of this nucleus with the mesencephalic trigeminal nucleus of jawed vertebrates is discussed.
In this study we have investigated the pattern of morphogenesis and axogenesis in the turbot brain during embryonic and early larval stages with immunohistochemistry using an antibody against acetylated tubulin. The first immunoreactive elements were detected at 74 h post-fertilization in fibers running in the medial and lateral longitudinal fascicles. Newly positive axonal bundles are progressively added during development forming rostrocaudally directed tracts. The tract of the postoptic commissure appears at 86 h post-fertilization located rostrally to the medial longitudinal fascicle. Together, the medial longitudinal fascicle and the tract of the postoptic commissure constitute a major longitudinal axonal pathway, which is extended rostrally in embryos of 98 h post-fertilization by the supraoptic tract. In the forebrain, two vertical tracts, the tract of the posterior commissure (appearing around 98 h post-fertilization) and the tract of the anterior commissure (detected at 110 h post-fertilization) project descending axons to the pre-existing axonal longitudinal pathway. These early tracts are connected by four associated commissures (ventral tegmental, postoptic, posterior and anterior commissure). Some groups of labeled cell bodies are identified either as the origin of the embryonic tracts or contributing axons to the axonal pathways. Additionally, a conspicuous cluster of large cells, not clearly associated with any axonal bundle, was observed from 98 h post-fertilization lining the caudal floor of the presumptive hypothalamus. Several hypotheses are proposed to determine the nature of these cells. A comparison of the emergence of the axonal circuitry in turbot and that of other teleosts reveals significant analogies, suggesting that a common pattern underlies the establishment of the embryonic tracts in this vertebrate group. The minor differences observed between different teleost species, associated with the absence of some axonal fascicles, is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.