Bağımlı değişkenin sayıma dayalı veri olması durumunda güvenilir tahminler yapabilmek için Sayma Verisi Regresyon Modellerinin kullanılması daha uygundur. Sayıma dayalı veriler kesikli bir yapıda olduğundan bu regresyon modelleri kesikli dağılımlardan yararlanılarak geliştirilmiştir. Bu çalışmada, Türkiye İstatistik Kurumu (TÜİK) 2019 yılı Gelir ve Yaşam Koşulları Araştırması (GKYA) verilerinden yararlanarak bir sayma verisi olan bireylerin işsiz kaldığı sürenin (ay cinsinden) modellenmesi amaçlanmıştır. Analizde kullanılacak bağımsız değişkenler, tüm olası alt küme yöntemi ile medeni durum, eğitim durumu, genel sağlık ve kronik hastalık olarak belirlenmiştir. Sayma veri regresyon modellerinden Poisson Regresyon (PR), Negatif Binom Regresyon (NBR), Sıfır Değer Ağırlıklı Negatif Binom Regresyon (ZINB) ve Genelleştirilmiş Poisson Regresyon (GPR) modelleri ele alınarak, bu dört model tahmin edilmiş ve veri setine en iyi uyum sağlayan model bilgi kriterleri ile belirlenmiştir. Tahmin edilen modeller içerisinde veri setine en iyi uyum sağlayan modelin ZINB modeli olduğu belirlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.