Metagenomics research has recently thrived due to DNA sequencing technologies improvement, driving the emergence of new analysis tools and the growth of taxonomic databases. However, there is no all-purpose strategy that can guarantee the best result for a given project and there are several combinations of software, parameters and databases that can be tested. Therefore, we performed an impartial comparison, using statistical measures of classification for eight bioinformatic tools and four taxonomic databases, defining a benchmark framework to evaluate each tool in a standardized context. Using in silico simulated data for 16S rRNA amplicons and whole metagenome shotgun data, we compared the results from different software and database combinations to detect biases related to algorithms or database annotation. Using our benchmark framework, researchers can define cut-off values to evaluate the expected error rate and coverage for their results, regardless the score used by each software. A quick guide to select the best tool, all datasets and scripts to reproduce our results and benchmark any new method are available at https://github.com/Ales-ibt/Metagenomic-benchmark. Finally, we stress out the importance of gold standards, database curation and manual inspection of taxonomic profiling results, for a better and more accurate microbial diversity description.
Marine sediments are an example of one of the most complex microbial habitats. These bacterial communities play an important role in several biogeochemical cycles in the marine ecosystem. In particular, the Gulf of Mexico has a ubiquitous concentration of hydrocarbons in its sediments, representing a very interesting niche to explore. Additionally, the Mexican government has opened its oil industry, offering several exploration and production blocks in shallow and deep water in the southwestern Gulf of Mexico (swGoM), from which there are no public results of conducted studies. Given the higher risk of large-scale oil spills, the design of contingency plans and mitigation activities before oil exploitation is of growing concern. Therefore, a bacterial taxonomic baseline profile is crucial to understanding the impact of any eventual oil spill. Here, we show a genus level taxonomic profile to elucidate the bacterial baseline, pointing out richness and relative abundance, as well as relationships with 79 abiotic parameters, in an area encompassing ∼150,000 km2, including a region where the exploitation of new oil wells has already been authorized. Our results describe for the first time the bacterial landscape of the swGoM, establishing a bacterial baseline “core” of 450 genera for marine sediments in this region. We can also differentiate bacterial populations from shallow and deep zones of the swGoM based on their community structure. Shallow sediments have been chronically exposed to aromatic hydrocarbons, unlike deep zones. Our results reveal that the bacterial community structure is particularly enriched with hydrocarbon-degrading bacteria in the shallow zone, where a greater aromatic hydrocarbon concentration was determined. Differences in the bacterial communities in the swGoM were also observed through a comprehensive comparative analysis relative to various marine sediment sequencing projects, including sampled sites from the Deep Water Horizon oil spill. This study in the swGoM provides clues to the bacterial population adaptation to the ubiquitous presence of hydrocarbons and reveals organisms such as Thioprofundum bacteria with potential applications in ecological surveillance. This resource will allow us to differentiate between natural conditions and alterations generated by oil extraction activities, which, in turn, enables us to assess the environmental impact of such activities.
BackgroundThe study of human B cell response to dengue virus (DENV) infection is critical to understand serotype-specific protection and the cross-reactive sub-neutralizing response. Whereas the first is beneficial and thus represents the ultimate goal of vaccination, the latter has been implicated in the development of severe disease, which occurs in a small, albeit significant, fraction of secondary DENV infections. Both primary and secondary infections are associated with the production of poly-reactive and cross-reactive IgG antibodies.MethodsTo gain insight into the effect of DENV infection on the B cell repertoire, we used VH region high-throughput cDNA sequencing of the peripheral blood IgG B cell compartment of 19 individuals during the acute phase of infection. For 11 individuals, a second sample obtained 6 months later was analyzed for comparison. Probabilities of sequencing antibody secreting cells or memory B cells were estimated using second-order Monte Carlo simulation.ResultsWe found that in acute disease there is an increase in IgG B cell diversity and changes in the relative use of segments IGHV1-2, IGHV1-18, and IGHV1-69. Somewhat unexpectedly, an overall low proportion of somatic hypermutated antibody genes was observed during the acute phase plasmablasts, particularly in secondary infections and those cases with more severe disease.ConclusionsOur data are consistent with an innate-like antiviral recognition system mediated by B cells using defined germ-line coded B cell receptors, which could provide a rapid germinal center-independent antibody response during the early phase of infection. A model describing concurrent T-dependent and T-independent B cell responses in the context of DENV infection is proposed, which incorporates the selection of B cells using hypomutated IGHV segments and their potential role in poly/cross-reactivity. Its formal demonstration could lead to a definition of its potential implication in antibody-dependent enhancement, and may contribute to rational vaccine development efforts.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0276-1) contains supplementary material, which is available to authorized users.
BackgroundDespite the potential to produce antibodies that can neutralize different virus (heterotypic neutralization), there is no knowledge of why vaccination against influenza induces protection predominantly against the utilized viral strains (homotypic response). Identification of structural patterns of the B cell repertoire associated to heterotypic neutralization may contribute to identify relevant epitopes for a universal vaccine against influenza.MethodsBlood samples were collected from volunteers immunized with 2008/2009 trivalent inactivated vaccine (TIV), pandemic H1N1 (pdmH1N1) monovalent inactivated vaccine (MIV) and the 2014/2015 TIV. Neutralization was assessed by hemagglutination and microneutralization test. IgG VH amplicons derived from peripheral blood RNA from pre-immune and 7 days post vaccination were subjected to 454-Roche sequencing. Full reconstruction of the sampled repertoires was done with ImmunediveRsity.ResultsThe TIV induced a predominantly homotypic neutralizing serologic response, while the 09 MIV induced a heterotypic neutralizing seroconversion in 17 % of the individuals. Both the 08/09 and the 14/15 TIV were associated with a reduction in clonotypic diversity, whereas 09 MIV was the opposite. Moreover, TIV and MIV induced distinctive patterns of IGHV segment use that are consistent with B cell selection by conserved antigenic determinants shared by the pre-pandemic and the pandemic strains. However, low somatic hypermutation rates in IgG after 09 MIV immunization, but not after 08/09 and 14/15 TIV immunization were observed. Furthermore, no evidence of the original antigenic sin was found in the same individuals after vaccination with the three vaccines.ConclusionsImmunization with a new influenza virus strain (2009 pdmH1N1) induced unique effects in the peripheral B cell repertoire clonal structure, a stereotyped response involving distinctive IGHV segment use and low somatic hypermutation levels. These parameters were contrastingly different to those observed in response to pre-pandemic and post-pandemic vaccination, and may be the result of clonal selection of common antigenic determinants, as well as germinal center-independent responses that wane as the pandemic strain becomes seasonal. Our findings may contribute in the understanding of the structural and cellular basis required to develop a universal influenza vaccine.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-015-0239-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.