We consider the problem of recognizing objects in collections of art works, in view of automatically labeling, searching and organizing databases of art works. To avoid manually labelling objects, we introduce a framework for transferring a convolutional neural network (CNN), trained on available large collections of labelled natural images, to the context of drawings. We retrain both the top and the bottom layer of the network, responsible for the high-level classification output and the low-level features detection respectively, by transforming natural images into drawings. We apply this procedure to the drawings in the Jan Brueghel Wiki, and show the transferred CNN learns a discriminative metric on drawings and achieves good recognition accuracy. We also discuss why standard descriptorbased methods is problematic in the context of drawings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.