Keywords:Cancer testis antigens Published by Elsevier B.V. All rights reserved.
IntroductionThe search for tumor-associated antigens (TAA) capable to induce a tumor-directed immune response and the development of cancer vaccines targeting these TAA have been a major effort for the tumor immunology community in the past decades.
Cancer/testis antigens (CTA) are suitable targets for immunotherapy of human malignancies, and clinical trials are mainly focusing on MAGE-A3. However, the heterogeneous intratumor expression of CTA may hamper the effectiveness of CTA-directed vaccination through the emergence of CTA-negative neoplastic clones. We investigated the intratumor heterogeneity of CTA in human melanoma and the underlying molecular mechanism(s) at clonal level using 14 single cell clones generated from the melanoma lesion Mel 313. Reverse transcription-PCR revealed a highly heterogeneous expression of MAGE-A1, -A2, -A3, -A4, -A6, GAGE 1-6, SSX 1-5, and PRAME among melanoma clones. Only nine clones expressed MAGE-A3 and competitive reverse transcription-PCR identified relative differences in the number of mRNA molecules of up to 130-fold between clones 5 and 14. This clonal heterogeneity of MAGE-A3 expression correlated with the methylation status of specific CpG dinucleotides in MAGE-A3 promoter: i.e., hypomethylated CpG dinucleotides at positions ؊321, ؊151, ؊19, ؊16, ؊5, ؊2, ؉21, and ؉42 were found in clones expressing high but not low levels of MAGE-A3. Supporting the role of DNA methylation in generating the intratumor heterogeneity of CTA, the DNA hypomethylating agent 5-aza-2-deoxycytidine (5-AZA-dCyd) invariably induced their expression in all CTA-negative clones. Furthermore, 5-AZA-dCyd-treatment reduced to 6 folds the differential expression of MAGE-A3 between clones 5 and 14, which became recognized to a similar extent by T cells specific for a MAGE-A-encoded peptide. These findings identify promoter methylation as directly responsible for the intratumoral heterogeneity of therapeutic CTA in melanoma and foresee the use of 5-AZA-dCyd to overcome the limitations set by their intratumor heterogeneous expression to CTA-based vaccine therapy.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by ''epigenetic drugs'' such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.
Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.