Genetic Basis of Thermal Tolerance influence both dynamic plastic responses to thermal stress and preparatory processes that improve thermal resistance. These results also have utility for directly comparing GWAS and transcriptomic approaches for identifying candidate genes associated with thermal tolerance.
1. Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures.2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses.3. Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice. 4. Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.