Eosinophils have been associated with fibrosis. To investigate their direct role in fibrosis, human peripheral blood eosinophil sonicate was added to human lung or dermal fibroblasts, and proliferation ([ 3 H]thymidine) and collagen synthesis ([ 3 H]proline) were evaluated. Proliferation was enhanced significantly in the monolayers in a dosedependent manner. The activity of the eosinophil fibrogenic factor(s) remained unaltered when heated (56°C, 30 min). Supernatants of cultured eosinophils (20 min or 18 hr) also enhanced lung fibroblast proliferation, indicating that the preformed mitogenic factor(s) can be released both promptly and with a long kinetic. Eosinophils significantly decreased collagen production in lung fibroblasts while increasing it in dermal fibroblasts. However, eosinophils containing matrix metalloproteinase 9 (zymography) in latent form and tissue inhibitors of metalloproteinases 1 and 2 (reverse zymography) did not inf luence either fibroblast matrix metalloproteinases or tissue inhibitors of metalloproteinases. Eosinophil sonicate added to skin and lung fibroblasts in tridimensional collagen lattices significantly enhanced lattice contraction. Transforming growth factor  (TGF-) is a major fibrogenic cytokine produced by eosinophils. Therefore, to assess its role, eosinophil sonicate was preincubated with anti-TGF- neutralizing antibodies. This treatment partially inhibited proliferation of lung and collagen synthesis of dermal fibroblasts and suppressed the stimulation of lattice contraction, indicating the fibrogenic role of eosinophil-associated TGF-. In conclusion, we have shown that eosinophils act as direct modulatory cells in fibroblast proliferation, collagen synthesis, and lattice contraction, in part, through TGF-. These data corroborate the importance of eosinophils in skin and lung fibrosis.
We have shown that human mast cells, by granule-stored and therefore quickly releasable mediators, increase human skin fibroblast proliferation, collagen synthesis, TIMP-2 and collagen gel contraction. Therefore, mast cells have a direct and potentiating role in skin remodelling and fibrosis.
These data are consistent with the hypothesis that mast cells in connective tissue may be responsible for fibroblast activation at the early phases of tissue repair and fibrosis.
Mast cells are able to induce proliferation of skin fibroblasts; however, their effect on lung fibroblasts has not been clearly established. Using in vitro cocultures of rat or human mast cells with lung fibroblasts, the authors determined whether mast cells alter proliferation, collagen synthesis, and metalloproteinase production from lung fibroblasts. Mast cells enhanced the proliferation of human fibroblasts (mean +/- SEM: 90% +/- 4.7% increase, P < .001) while inhibiting fibroblast collagen synthesis (48.1% +/- 4.2% decrease, P < .001). Histamine, but not tryptase, significantly enhanced fibroblast proliferation: 92% +/- 5.8% (P < .001) and 39.2% +/- 4.3% (P > 0.05), respectively. Rat mast cell sonicate added to lung fibroblasts induced the activation of metalloproteinase-9 while inhibiting that of metaloproteinase-2. The addition of lipopolysaccharide (LPS)-stimulated lung macrophage supernatant further enhanced the poliferative effect of mast cells on fibroblasts (by 60% +/- 7.8%, P < .001) and induced synthesis of collagen from these cells (190% +/- 28% increase versus control, P < .05). This study demonstrates that mast cells influence several aspects of lung fibroblast function in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.