The increasing demand for underwater robotic intervention systems around the world in several application domains requires more versatile and inexpensive systems. By using a wireless communication system, supervised semi-autonomous robots have freedom of movement; however, the limited and varying bandwidth of underwater radio frequency (RF) channels is a major obstacle for the operator to get camera feedback and supervise the intervention. This paper proposes the use of progressive (embedded) image compression and region of interest (ROI) for the design of an underwater image sensor to be installed in an autonomous underwater vehicle, specially when there are constraints on the available bandwidth, allowing a more agile data exchange between the vehicle and a human operator supervising the underwater intervention. The operator can dynamically decide the size, quality, frame rate, or resolution of the received images so that the available bandwidth is utilized to its fullest potential and with the required minimum latency. The paper focuses first on the description of the system, which uses a camera, an embedded Linux system, and an RF emitter installed in an OpenROV housing cylinder. The RF receiver is connected to a computer on the user side, which controls the camera monitoring parameters, including the compression inputs, such as region of interest (ROI), size of the image, and frame rate. The paper focuses on the compression subsystem and does not attempt to improve the communications physical media for better underwater RF links. Instead, it proposes a unified system that uses well-integrated modules (compression and transmission) to provide the scientific community with a higher-level protocol for image compression and transmission in sub-sea robotic interventions. Keywords Progressive image compression Á Region of interest (ROI) Á Wavelet transforms Á Low-bandwidth communications Á Underwater vehicles for intervention Communicated by Sadek C. Absi Alfaro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.