41Publications

1,636Citation Statements Received

1,375Citation Statements Given

How they've been cited

1,899

14

1,622

0

How they cite others

1,161

23

1,352

0

Publications

Order By: Most citations

The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain. In particular, it is often desirable in graph signal processing applications that a graph is chosen such that the data admit certain regularity or smoothness on the graph. In this paper, we address the problem of learning graph Laplacians, which is equivalent to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. To this end, we adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these signals. We show that the Gaussian prior leads to an efficient representation that favors the smoothness property of the graph signals. We then propose an algorithm for learning graphs that enforces such property and is based on minimizing the variations of the signals on the learned graph. Experiments on both synthetic and real world data demonstrate that the proposed graph learning framework can efficiently infer meaningful graph topologies from signal observations under the smoothness prior.

The construction of a meaningful graph topology plays a crucial role in the effective representation, processing, analysis and visualization of structured data. When a natural choice of the graph is not readily available from the data sets, it is thus desirable to infer or learn a graph topology from the data. In this tutorial overview, we survey solutions to the problem of graph learning, including classical viewpoints from statistics and physics, and more recent approaches that adopt a graph signal processing (GSP) perspective. We further emphasize the conceptual similarities and differences between classical and GSP-based graph inference methods, and highlight the potential advantage of the latter in a number of theoretical and practical scenarios. We conclude with several open issues and challenges that are keys to the design of future signal processing and machine learning algorithms for learning graphs from data.

Abstract-Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or predetermined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the existing works adopt, are often too general and unable to properly capture localized properties of data. In this paper, we go beyond this classical data model and rather propose to represent information as a sparse combination of localized functions that live on a data structure represented by a graph. Based on this model, we focus on the problem of inferring the connectivity that best explains the data samples at different vertices of a graph that is a priori unknown. We concentrate on the case where the observed data is actually the sum of heat diffusion processes, which is a quite common model for data on networks or other irregular structures. We cast a new graph learning problem and solve it with an efficient nonconvex optimization algorithm. Experiments on both synthetic and real world data finally illustrate the benefits of the proposed graph learning framework and confirm that the data structure can be efficiently learned from data observations only. We believe that our algorithm will help solving key questions in diverse application domains such as social and biological network analysis where it is crucial to unveil proper geometry for data understanding and inference.

Abstract-In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable propertiesthe ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on weighted graphs, an additional design challenge is to incorporate the intrinsic geometric structure of the irregular data domain into the atoms of the dictionary. In this work, we propose a parametric dictionary learning algorithm to design data-adapted, structured dictionaries that sparsely represent graph signals. In particular, we model graph signals as combinations of overlapping local patterns. We impose the constraint that each dictionary is a concatenation of subdictionaries, with each subdictionary being a polynomial of the graph Laplacian matrix, representing a single pattern translated to different areas of the graph. The learning algorithm adapts the patterns to a training set of graph signals. Experimental results on both synthetic and real datasets demonstrate that the dictionaries learned by the proposed algorithm are competitive with and often better than unstructured dictionaries learned by state-of-the-art numerical learning algorithms in terms of sparse approximation of graph signals. In contrast to the unstructured dictionaries, however, the dictionaries learned by the proposed algorithm feature localized atoms and can be implemented in a computationally efficient manner in signal processing tasks such as compression, denoising, and classification.

Abstract-This paper addresses the problem of compression of 3D point cloud sequences that are characterized by moving 3D positions and color attributes. As temporally successive point cloud frames are similar, motion estimation is key to effective compression of these sequences. It however remains a challenging problem as the point cloud frames have varying numbers of points without explicit correspondence information. We represent the time-varying geometry of these sequences with a set of graphs, and consider 3D positions and color attributes of the points clouds as signals on the vertices of the graphs. We then cast motion estimation as a feature matching problem between successive graphs. The motion is estimated on a sparse set of representative vertices using new spectral graph wavelet descriptors. A dense motion field is eventually interpolated by solving a graph-based regularization problem. The estimated motion is finally used for removing the temporal redundancy in the predictive coding of the 3D positions and the color characteristics of the point cloud sequences. Experimental results demonstrate that our method is able to accurately estimate the motion between consecutive frames. Moreover, motion estimation is shown to bring significant improvement in terms of the overall compression performance of the sequence. To the best of our knowledge, this is the first paper that exploits both the spatial correlation inside each frame (through the graph) and the temporal correlation between the frames (through the motion estimation) to compress the color and the geometry of 3D point cloud sequences in an efficient way.

No abstract

We consider the problem of distributed average consensus in a sensor network where sensors exchange quantized information with their neighbors. We propose a novel quantization scheme that exploits the increasing correlation between the values exchanged by the sensors throughout the iterations of the consensus algorithm. A low complexity, uniform quantizer is implemented in each sensor, and refined quantization is achieved by progressively reducing the quantization intervals during the convergence of the consensus algorithm. We propose a recurrence relation for computing the quantization parameters that depend on the network topology and the communication rate. We further show that the recurrence relation can lead to a simple exponential model for the size of the quantization step size over the iterations, whose parameters can be computed a priori. Finally, simulation results demonstrate the effectiveness of the progressive quantization scheme that leads to the consensus solution even at low communication rate. Index TermsDistributed average consensus, sensor networks, progressive quantization. I. INTRODUCTIONDistributed consensus algorithms [1] have attracted a lot of research interest due to their applications in wireless network systems. They are mainly used in ad-hoc sensor networks in order to compute the global average of sensor data in a distributed fashion, using only local inter-sensor communication. Some of their most important applications include distributed coordination and synchronization in multi-agent systems [2], distributed estimation [3], distributed classification [4] and distributed control problems.While in theory convergence to the global average is mostly dependent on the sensor network topology, the performance of distributed average consensus algorithms in practical systems is largely connected to the power or communication constraints and limited precision operations. In general, the information exchanged by the network nodes has to be quantized prior to transmission due to limited communication bandwidth and limited computational power. However, this quantization process induces some quantization noise that is accumulated throughout the iterative consensus algorithm and affects its convergence, leading to significant performance degradation [5].In this paper, we design a novel distributed progressive quantization algorithm that limits the quantization noise and leads to convergence to the average value even at low bit rates. Motivated by the observation that the correlation between the values communicated by the nodes increases along the consensus iterations, we build on our previous work [6] and propose to progressively and consistently reduce the range of the quantizer in order to refine the information exchanged in the network and guide the sensors to converge to the average consensus value. The proposed quantization scheme is computationally simple and consistent throughout the iterations as every node implements the same quantization all the time. We describe a method for computing...

Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.

hi@scite.ai

334 Leonard St

Brooklyn, NY 11211

Copyright © 2024 scite LLC. All rights reserved.

Made with 💙 for researchers

Part of the Research Solutions Family.