Wireless Sensor Networks are considered to be among the most rapidly evolving technological domains thanks to the numerous benefits that their usage provides. As a result, from their first appearance until the present day, Wireless Sensor Networks have had a continuously growing range of applications. The purpose of this article is to provide an up-to-date presentation of both traditional and most recent applications of Wireless Sensor Networks and hopefully not only enable the comprehension of this scientific area but also facilitate the perception of novel applications. In order to achieve this goal, the main categories of applications of Wireless Sensor Networks are identified, and characteristic examples of them are studied. Their particular characteristics are explained, while their pros and cons are denoted. Next, a discussion on certain considerations that are related with each one of these specific categories takes place. Finally, concluding remarks are drawn.
Abstract:The wide utilization of Wireless Sensor Networks (WSNs) is obstructed by the severely limited energy constraints of the individual sensor nodes. This is the reason why a large part of the research in WSNs focuses on the development of energy efficient routing protocols. In this paper, a new protocol called Equalized Cluster Head Election Routing Protocol (ECHERP), which pursues energy conservation through balanced clustering, is proposed. ECHERP models the network as a linear system and, using the Gaussian elimination algorithm, calculates the combinations of nodes that can be chosen as cluster heads in order to extend the network lifetime. The performance evaluation of ECHERP is carried out through simulation tests, which evince the effectiveness of this protocol in terms of network energy efficiency when compared against other well-known protocols.
With the rise of the Internet of Things (IoT), applications have become smarter and connected devices give rise to their exploitation in all aspects of a modern city. As the volume of the collected data increases, Machine Learning (ML) techniques are applied to further enhance the intelligence and the capabilities of an application. The field of smart transportation has attracted many researchers and it has been approached with both ML and IoT techniques. In this review, smart transportation is considered to be an umbrella term that covers route optimization, parking, street lights, accident prevention/detection, road anomalies, and infrastructure applications. The purpose of this paper is to make a self-contained review of ML techniques and IoT applications in Intelligent Transportation Systems (ITS) and obtain a clear view of the trends in the aforementioned fields and spot possible coverage needs. From the reviewed articles it becomes profound that there is a possible lack of ML coverage for the Smart Lighting Systems and Smart Parking applications. Additionally, route optimization, parking, and accident/detection tend to be the most popular ITS applications among researchers.
The power awareness issue is the primary concern within the domain of Wireless Sensor Networks (WSNs). Most power dissipation ocurrs during communication, thus routing protocols in WSNs mainly aim at power conservation. Moreover, a routing protocol should be scalable, so that its effectiveness does not degrade as the network size increases. In response to these issues, this work describes the development of an efficient routing protocol, named SHPER (Scaling Hierarchical Power Efficient Routing).
Wireless Sensor Networks (WSNs) are among the most emerging technologies, thanks to their great capabilities and their ever growing range of applications. However, the lifetime of WSNs is extremely restricted due to the delimited energy capacity of their sensor nodes. This is why energy conservation is considered as the most important research concern for WSNs. Radio communication is the utmost energy consuming function in a WSN. Thus, energy efficient routing is necessitated to save energy and thus prolong the lifetime of WSNs. For this reason, numerous protocols for energy efficient routing in WSNs have been proposed. This article offers an analytical and up to date survey on the protocols of this kind. The classic and modern protocols presented are categorized, depending on i) how the network is structured, ii) how data are exchanged, iii) whether location information is or not used, and iv) whether Quality of Service (QoS) or multiple paths are or not supported. In each distinct category, protocols are both described and compared in terms of specific performance metrics, while their advantages and disadvantages are discussed. Finally, the study findings are discussed, concluding remarks are drawn, and open research issues are indicated.
Modern achievements accomplished in both cognitive neuroscience and human-machine interaction technologies have enhanced the ability to control devices with the human brain by using Brain-Computer Interface systems. Particularly, the development of brain-controlled mobile robots is very important because systems of this kind can assist people, suffering from devastating neuromuscular disorders, move and thus improve their quality of life. The research work presented in this paper, concerns the development of a system which performs motion control in a mobile robot in accordance to the eyes' blinking of a human operator via a synchronous and endogenous Electroencephalography-based Brain-Computer Interface, which uses alpha brain waveforms. The received signals are filtered in order to extract suitable features. These features are fed as inputs to a neural network, which is properly trained in order to properly guide the robotic vehicle. Experimental tests executed on 12 healthy subjects of various gender and age, proved that the system developed is able to perform movements of the robotic vehicle, under control, in forward, left, backward, and right direction according to the alpha brainwaves of its operator, with an overall accuracy equal to 92.1%.A Brain-Computer Interface (BCI) is a system that enables communication between brain and machines. A BCI, in order to perform its purposes, records brain signals, interprets them, and produces corresponding commands to a connected machine [5]. BCI technology is used in various applications, such as security and authentication, education, neuromarketing and advertisement, games and entertainment, and several medical applications, such as cognitive neuroscience, brain-related prevention and diagnosis of health problems, rehabilitation, and restoration [6][7][8][9].This article presents the development of a BCI-based system that performs the motion control of a robotic vehicle by using brainwaves of a human operator. After capturing the brainwaves via EEG, a set of features is extracted and given as input to a neural network, which is trained to predict the desired movement of the robotic vehicle. The rest of this paper is organized as follows: In Section 2, the theoretical background of the research carried out is set up. In Section 3, the structure and operation of the proposed system are explained. In Section 4, the performance of the system is evaluated through the description of the experimental tests made, and the presentation of the corresponding results and discussion on them. Finally, Section 5 concludes the article and proposes future research work. Theoretical Background BCI TypesA BCI provides an interconnection platform that supports the full duplex communication between the brain and an external device. According to the way that BCIs use to set up the brain-device interconnection, they are classified as non-invasive or invasive. Non-invasive BCIs use electrodes placed on the scalp. They are easy and safe to use, low-cost, portable, and offer a relatively hig...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.