Insecticide Treated Nets (ITNs) have been shown to reduce morbidity and mortality, but coverage and proper utilization continues to be moderate in many parts of sub-Saharan Africa. The gains made through a nationwide free distribution were explored as well as the effect on malaria prevalence in semi-urban and rural communities in south western Cameroon. A cross sectional survey was conducted between August and December 2013. Information on net possession, status and use were collected using a structured questionnaire while malaria parasitaemia was determined on Giemsa-stained blood smears by light microscopy. ITN ownership increased from 41.9% to 68.1% following the free distribution campaign, with 58.3% (466/799) reportedly sleeping under the net. ITN ownership was lower in rural settings (adjusted OR = 1.93, 95%CI = 1.36–2.74, p<0.001) and at lower altitude (adjusted OR = 1.79, 95%CI = 1.22–2.62, p = 0.003) compared to semi-urban settings and intermediate altitude respectively. Conversely, ITN usage was higher in semi-urban settings (p = 0.002) and at intermediate altitude (p = 0.002) compared with rural localities and low altitude. Malaria parasitaemia prevalence was higher in rural (adjusted OR = 1.63, 95%CI = 1.07–2.49) compared to semi-urban settings and in those below 15 years compared to those 15 years and above. Overall, participants who did not sleep under ITN were more susceptible to malaria parasitaemia (adjusted OR = 1.70, 95%CI = 1.14–2.54, p = 0.009). Despite the free distribution campaign, ITN ownership and usage, though improved, is still low. As children who reside in rural settings have greater disease burden (parasitemia) than children in semi-urban settings, the potential gains on both reducing inequities in ITN possession as well as disease burden might be substantial if equitable distribution strategies are adopted.
BackgroundDrug resistance is one of the greatest challenges of malaria control programmes, with the monitoring of parasite resistance to artemisinins or to Artemisinin Combination Therapy (ACT) partner drugs critical to elimination efforts. Markers of resistance to a wide panel of antimalarials were assessed in natural parasite populations from southwestern Cameroon.MethodsIndividuals with asymptomatic parasitaemia or uncomplicated malaria were enrolled through cross-sectional surveys from May 2013 to March 2014 along the slope of mount Cameroon. Plasmodium falciparum malaria parasitaemic blood, screened by light microscopy, was depleted of leucocytes using CF11 cellulose columns and the parasite genotype ascertained by sequencing on the Illumina HiSeq platform.ResultsA total of 259 participants were enrolled in this study from three different altitudes. While some alleles associated with drug resistance in pfdhfr, pfmdr1 and pfcrt were highly prevalent, less than 3% of all samples carried mutations in the pfkelch13 gene, none of which were amongst those associated with slow artemisinin parasite clearance rates in Southeast Asia. The most prevalent haplotypes were triple mutants Pfdhfr I 51 R 59 N 108 I 164(99%), pfcrt- C72V73 I 74 E 75 T 76 (47.3%), and single mutants PfdhpsS436 G 437K540A581A613(69%) and Pfmdr1 N86 F 184D1246 (53.2%).ConclusionsThe predominance of the Pf pfcrt CVIET and Pf dhfr IRN triple mutant parasites and absence of pfkelch13 resistance alleles suggest that the amodiaquine and pyrimethamine components of AS-AQ and SP may no longer be effective in their role while chloroquine resistance still persists in southwestern Cameroon.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-017-0350-y) contains supplementary material, which is available to authorized users.
Background. Falciparum malaria is an important pediatric infectious disease that frequently affects pregnant women and alters infant morbidity. However, the impact of some prenatal and perinatal risk factors such as season and intermittent preventive treatment during pregnancy (IPTp) on neonatal susceptibility has not been fully elucidated.Methods. A cohort of 415 infants born to women who were positive and negative for malaria was monitored in a longitudinal study in Southwestern Cameroon. The clinical and malaria statuses were assessed throughout, whereas paired maternal-cord and 1-year-old antimalarial antibodies were assayed by enzyme-linked immunosorbent assay. Infant susceptibility to malaria was ascertained after accounting for IPTp and season in the statistical analysis.Results. Malaria prevalence was higher in women (P = .039) who delivered during the rainy season and their infants (P = .030) compared with their dry season counterparts. Infants born to women who were positive for malaria (6.40 ± 2.83 months) were older (P = .028) than their counterparts who were negative for malaria (5.52 ± 2.85 months) when they experienced their first malaria episode. Infants born in September–November (adjusted odds ratio [OR] = 0.31, 95% confidence interval [CI] = 0.13–0.72) and to mothers on 1 or no IPTp-sulfadoxine/pyrimethamine (SP) dose (adjusted OR = 0.51, 95% CI = 0.28–0.91) were protected, whereas those born in the rainy season (adjusted OR = 2.82, 95% CI = 1.21–6.55) were susceptible to malaria.Conclusions. Intermittent preventive treatment during pregnancy and month of birth have important implications for infant susceptibility to malaria, with 2 or more IPTp-SP dosage possibly reducing immunoglobulin M production.
BackgroundMalaria remains a major global health burden despite the intensification of control efforts, due partly to the lack of an effective vaccine. Information on genetic diversity in natural parasite populations constitutes a major impediment to vaccine development efforts and is limited in some endemic settings. The present study characterized diversity by investigating msp1 block 2 polymorphisms and the relationship between the allele families with ethnodemographic indices and clinical phenotype.MethodIndividuals with asymptomatic parasitaemia (AP) or uncomplicated malaria (UM) were enrolled from rural, semi-rural and semi-urban localities at varying altitudes along the slope of mount Cameroon. P. falciparum malaria parasitaemic blood screened by light microscopy was depleted of leucocytes using CF11 cellulose columns and the parasite DNA genotyped by nested PCR.ResultsLength polymorphism was assessed in 151 field isolates revealing 64 (5) and 274 (22) distinct recombinant and major msp1 allelic fragments (genotypes) respectively. All family specific allelic types (K1, MAD20 and RO33) as well as MR were observed in the different locations, with K1 being most abundant. Eighty seven (60 %) of individuals harbored more than one parasite clone, with a significant proportion (p = 0.009) in rural compared to other settings. AP individuals had higher (p = 0.007) K1 allele frequencies but lower (p = 0.003) mean multiplicity of genotypes per infection (2.00 ± 0.98 vs. 2.56 ± 1.17) compared to UM patients.ConclusionsThese results indicate enormous diversity of P. falciparum in the area and suggests that allele specificity and complexity may be relevant for the progression to symptomatic disease.
Background Vitamin D has been shown to exert its actions on the musculoskeletal, gastrointestinal, prostate, renal, endocrine, immune, and cardiovascular systems. Current reported data of hypovitaminosis D reveals a global pandemic, with an estimated one billion people worldwide presenting with hypovitaminosis D. Objective This study aimed at investigating the vitamin D status and its associated risk factors in Cameroonians from the South West Region. Method The study was a community- and hospital-based prospective longitudinal study. It was carried out during the dry and rainy seasons between the months of July and December 2015 in the South West Region of Cameroon involving 372 participants aged 35 years and above. After obtaining informed consent, a structured questionnaire was used to capture demographic data and risk factors of vitamin D deficiency. Blood samples were collected from the volunteer participants in the peak months of the rainy season and dry season, and the serum used to analyse for vitamin D by ELISA and calcium by spectrophotometry. 25(OH)D levels ≥75 nmol/L (≥30 ng/mL) were considered sufficient while levels <75 nmol/L were considered as hypovitaminosis D (insufficiency/deficiency). Results Hypovitaminosis D (deficiency/insufficiency) was prevalent in 25.8% (96) of the study population, with only 3.2% (12) deficiency and 22.6% (84) insufficiency. There was a significant inverse relationship (r=−0.119, p=0.02) between age and 25(OH)D levels; however, this relationship was not significant when controlled for gender, number of hours spent outdoors, and percentage of body covered. Gender, ethnic origin, percentage of body covered, time spent outdoors, and season did not influence serum vitamin D levels. Conclusion Results of this study suggest that the prevalence of hypovitaminosis D is relatively low in this study population and only age is a risk factor of vitamin D deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.