We present PyXtal_FF—a package based on Python programming language—for developing machine learning potentials (MLPs). The aim of PyXtal_FF is to promote the application of atomistic simulations through providing several choices of atom-centered descriptors and machine learning regressions in one platform. Based on the given choice of descriptors (including the atom-centered symmetry functions, embedded atom density, SO4 bispectrum, and smooth SO3 power spectrum), PyXtal_FF can train MLPs with either generalized linear regression or neural network models, by simultaneously minimizing the errors of energy/forces/stress tensors in comparison with the data from ab-initio simulations. The trained MLP model from PyXtal_FF is interfaced with the Atomic Simulation Environment (ASE) package, which allows different types of light-weight simulations such as geometry optimization, molecular dynamics simulation, and physical properties prediction. Finally, we will illustrate the performance of PyXtal_FF by applying it to investigate several material systems, including the bulk SiO2, high entropy alloy NbMoTaW, and elemental Pt for general purposes. Full documentation of PyXtal_FF is available at https://pyxtal-ff.readthedocs.io.
The development of new high dielectric materials is essential for advancement in modern electronics. Oxides are generally regarded as the most promising class of high dielectric materials for industrial applications as they possess both high dielectric constants and large band gaps. Most previous researches on high dielectrics were limited to already known materials. In this study, we conducted an extensive search for high dielectrics over a set of ternary oxides by combining crystal structure prediction and density functional perturbation theory calculations.From this search, we adopted multiple stage screening to identify 440 new low-energy high dielectric materials. Among these materials, 33 were identified as potential high dielectrics favorable for modern device applications. Our research has opened an avenue to explore novel high dielectric materials by combining crystal structure prediction and high throughput screening.
In this article, we present a systematic study on developing machine learning force fields (MLFFs) for crystalline silicon. While the main-stream approach of fitting a MLFF is to use a small and localized training set from molecular dynamics simulations, it is unlikely to cover the global features of the potential energy surface. To remedy this issue, we used randomly generated symmetrical crystal structures to train a more general Si-MLFF. Furthermore, we performed substantial benchmarks among different choices of material descriptors and regression techniques on two different sets of silicon data. Our results show that neural network potential fitting with bispectrum coefficients as descriptors is a feasible method for obtaining accurate and transferable MLFFs.
In this work, we present a numerical implementation to compute the atom-centered descriptors introduced by Bartok et al. [Phys. Rev. B 87, 184115 (2013)] based on the harmonic analysis of the atomic neighbor density function. Specifically, we focus on two types of descriptors, the smooth SO(3) power spectrum with the explicit inclusion of a radial basis and the SO(4) bispectrum obtained through mapping the radial component onto a polar angle of a four dimensional hypersphere. With these descriptors, various interatomic potentials for binary Ni–Mo alloys are obtained based on linear and neural network regression models. Numerical experiments suggest that both descriptors produce similar results in terms of accuracy. For linear regression, the smooth SO(3) power spectrum is superior to the SO(4) bispectrum when a large band limit is used. In neural network regression, better accuracy can be achieved with even less number of expansion components for both descriptors. As such, we demonstrate that spectral neural network potentials are feasible choices for large scale atomistic simulations.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.