Termites encounter a diverse array of potentially useful and harmful fungi in their subterranean habitats. These vary from symbiotic to harmful species with varying levels of virulence. How these hemiedaphic insects survive in habitats with infective fungi is not well understood. Possible mediation of olfactory signals in avoiding contact with entomopathogenic fungi has been explored by a number of workers. In the present study, we initially found that Macrotermes michaelseni detected a virulent isolate of Metarhizium anisopliae from some distance and avoided direct physical contact. We hypothesized that there may be a relationship between virulence and repellency of different isolates of M. anisopliae and Beauveria bassiana to the termite. We compared these for selected isolates of the two fungi. Positive correlations between the two parameters for both sets of isolates of the fungi were obtained. The results show an interesting co-evolutionary phenomenon in which the termite's response to either M. anisopliae or B. bassiana is directly related to potential harm these fungi can inflict on the insect and that the virulent strains are more likely to be recognized from some distance and avoided.
The recently discovered Anopheles symbiont, Microsporidia MB, has a strong malaria transmission-blocking phenotype in Anopheles arabiensis, the predominant Anopheles gambiae species complex member in many active transmission areas in eastern Africa. The ability of Microsporidia MB to block Plasmodium transmission together with vertical transmission and avirulence makes it a candidate for the development of a symbiont-based malaria transmission blocking strategy. We investigate the characteristics and efficiencies of Microsporidia MB transmission between An. arabiensis mosquitoes. We show that Microsporidia MB is not transmitted between larvae but is effectively transmitted horizontally between adult mosquitoes. Notably, Microsporidia MB was only found to be transmitted between male and female An. arabiensis, suggesting sexual horizontal transmission. In addition, Microsporidia MB cells were observed infecting the An. arabiensis ejaculatory duct. Female An. arabiensis that acquire Microsporidia MB horizontally are able to transmit the symbiont vertically to their offspring. We also investigate the possibility that Microsporidia MB can infect alternate hosts that live in the same habitats as their An. arabiensis hosts, but find no other non-anopheline hosts. Notably, Microsporidia MB infections were found in another primary malaria African vector, Anopheles funestus s.s. The finding that Microsporidia MB can be transmitted horizontally is relevant for the development of dissemination strategies to control malaria that are based on the targeted release of Microsporidia MB infected Anopheles mosquitoes.
Aims: Larval stages of Frankliniella occidentalis are known to be refractory to fungal infection compared with the adult stage. The objective of this study was to identify promising fungal isolate(s) for the control of larval stages of F. occidentalis. Methods and Results: Ten isolates of Metarhizium anisopliae and eight of Beauveria bassiana were screened for virulence against second-instar larvae of F. occidentalis. Conidial production and genetic polymorphism were also investigated. Metarhizium anisopliae isolates ICIPE 7, ICIPE 20, ICIPE 69 and ICIPE 665 had the shortest LT 50 values of 8AE0-8AE9 days. ICIPE 69, ICIPE 7 and ICIPE 20 had the lowest LC 50 values of 1AE1 · 10 7 , 2AE0 · 10 7 and 3AE0 · 10 7 conidia ml )1 , respectively. Metarhizium anisopliae isolate ICIPE 69 produced significantly more conidia than M. anisopliae isolates ICIPE 7 and ICIPE 20. Internally transcribed spacers sequences alignment showed differences in nucleotides composition, which can partly explain differences in virulence. Conclusion: These results coupled with the previous ones on virulence and field efficacy against other species of thrips make M. anisopliae isolate ICIPE 69 a good candidate. Significance and Impact of the Study: Metarhizium anisopliae isolate ICIPE 69 can be suggested for development as fungus-based biopesticide for thrips management.
Previously, we reported an interesting relationship between virulence and repellency of different isolates of the fungus Metarhizium anisopliae towards the termite Macrotermes michaelseni: the higher the virulence of a given isolate, the greater its repellency. In the present study, we compared the volatile profiles of two isolates, one that was more virulent (and repellent) and one that was less virulent (and repellent) to the termite. The prominent components of the two blends were characterized by gas chromatography-mass spectrometry and authenticated by gas chromatography coinjections with synthentic standards. There were both qualitative and quantitative differences between the two blends. The repellencies of synthetic blends of 10 prominent constituents of the volatiles of the two isolates were compared and that of the more virulent isolate was found to be significantly more repellent. Subtractive bioassays were carried out with one of the constituents of each of the two 10-component blends missing at a time to determine its relative contribution to the overall repellency. The results indicated that the repellency of the volatiles of each isolate was primarily due to synergistic effects of a smaller number of constituents. Intraspecific differences between the two isolates were also reflected in their nucleotide sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.