Recently a new group of ionic liquids (ILs) with herbicidal properties has been proposed for use in agriculture. Owing to the design of specific physicochemical properties, this group, referred to as herbicidal ionic liquids (HILs), allows for reducing herbicide field doses. Several ILs comprising phenoxy herbicides as anions and quaternary ammonium cations have been synthesized and tested under greenhouse and field conditions. However, since they are to be introduced into the environment, appropriate treatment technologies should be developed in order to ensure their proper removal and avoid possible contamination. In this study, didecyldimethylammonium (4-chloro-2-methylphenoxy) acetate was selected as a model HIL to evaluate the efficiency of a hybrid treatment method. Electrochemical oxidation or electro-Fenton was considered as a pretreatment step, whereas biodegradation was selected as the secondary treatment method. Both processes were carried out in current mode, at 10 mA with carbon felt as working electrode. The efficiency of degradation, oxidation and mineralization was evaluated after 6 h. Both processes decreased the total organic carbon and chemical oxygen demand (COD) values and increased the biochemical oxygen demand (BOD) on the COD ratio to a value close to 0.4, showing that the electrolyzed solutions can be considered as 'readily biodegradable.'
The activated carbon was modified by the wet method with a solution of ammonium persulfate at room temperature with different times. Kinetics studies showed that the modification took place mostly during the first 60 min of the process. The physicochemical properties of the obtained carbon were evaluated by thermogravimetric studies, Raman and FTIR spectroscopy, elementary and BET analyses. Furthermore, the fabricated material was applied in symmetric capacitors operated on the three aqueous electrolytes (1 M H 2 SO 4 , 6 M KOH and 1 M Na 2 SO 4 ). Mild conditions of the modification process are optimal to obtain electroactive groups on the carbon surface, which make this material useful in a supercapacitor application. In our studies, we noticed that this type of functional groups mainly appears on the surface of the activated carbon, in the first oxidation stage. With prolonged oxidation, they may transform into undesirable groups. The results show that this kind of modification improves the capacity of all the tested supercapacitors. It was connected mainly with an increase of the carbon material's wettability and in the case of capacitor operated in acid and base electrolytes due to a redox reaction of oxygen functional groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.