Conscious perception is crucial for adaptive behaviour yet access to consciousness varies for different types of objects. The visual system comprises regions with widely distributed category information and exemplar-level representations that cluster according to category. Does this categorical organisation in the brain provide insight into object-specific access to consciousness? We address this question using the Attentional Blink (AB) approach with visual objects as targets. We find large differences across categories in the AB then employ activation patterns extracted from a deep convolutional neural network (DCNN) to reveal that these differences depend on mid-to high-level, rather than low-level, visual features. We further show that these visual features can be used to explain variance in performance across trials. Taken together, our results suggest that the specific organisation of the higher-tier visual system underlies important functions relevant for conscious perception of differing natural images.
Humans are social animals whose mental wellbeing is shaped by the ability to attract and connect with each other. In a dating world, in which success can be determined by brief interactions, apart from physical features, there is a whole choreography of movements, physical reactions and subtle expressions that drive humans' sexual attraction. To determine what drives attraction, we measured nonverbal dynamics between people during real-life interactions outside the laboratory, where dating is most relevant. Participants wore eye-tracking glasses with embedded cameras, and devices to measure physiological signals including heart rate and skin conductance. Crucially, visible signals that can be controlled, such as facial expressions or gaze, did not predict attraction. Instead, attraction was predicted by synchrony in heart rate and skin conductance between partners, which are unconscious and difficult to regulate. Our findings suggest that shared emotionality is vital for mutual attraction. Moreover, physiological synchrony may provide a medium for translating visible expressions into embodied emotions, which can turn into intentions via somatosensory simulation.
Significance StatementIn our modern world where millions of people meet online without interacting face-to-face, the question "what defines attraction" has become very relevant. In this study, we used modern technologies to lay down a foundation for the processes that drive human attraction during reallife interactions. Contrary to common belief, we found that attraction is not predicted by a frequency of expression or eye fixation duration, nor is linearly related to the participant's autonomic nervous system activity. Importantly, we found that the more a participant synchronized their heart rate and skin conductance with their partner, the more they felt attracted toward that person. This study reveals a fundamental physiological process that plays a role in the formation of romantic relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.