An efficient eight‐step semisynthetic approach towards nonracemic pyrrolo‐allocolchicinoids starting from natural colchicine was developed by exploiting Pd‐catalyzed domino Sonogashira coupling/5‐endo‐dig cyclization of a 2‐iodo‐trifluoroacetanilide intermediate to build up the heterocyclic ring system. The N‐Me substitution of the pyrrole ring enhanced the antitumor activity of the prepared molecules by 2–3 orders of magnitude. Among the active compounds, the N‐methylated colchicinoid exhibited powerful cytotoxic and antiproliferative properties at concentrations < 1 nm.
Death receptors (DRs) and the participants of DR mediated signaling are characterized by a large number of mRNA isoforms generated by alternative splicing. Due to their high labor intensity and high cost, conventional methods (RT PCR and RT PCR in real time) are ineffective when the simultaneous detection of a plurality of mRNA isoforms is needed. In this regard, the use of DNA biochips is has prospective appli cations in analyzing the expression of many genes simultaneously. In this paper, we suggest an optimal strat egy of probes selection aimed at detecting the maximum number of mRNA splice variants generated by major participants of DR signaling. The objects of the study were 185 genes that form 1134 mRNA isoforms. As a result, a biochip design was developed that enables the detection of 499 mRNA isoforms (44% of total mRNA splice variants). The proposed strategy combines a high degree of modularity, the use of modern high perfor mance computers, and broad opportunities for setting up the selection criteria in accordance with the objec tives of the study.
Transforming growth factor β 1 (TGFB1) likely contributes to the pathogenesis of Epstein-Barr virus (EBV)-mediated cancer. A microarray containing 59 probes for detecting mRNA of members of TGFB1-associated pathways was developed. mRNA expression of TGFB1 receptors and members of connected pathways were examined in peripheral blood leukocytes of patients during acute EBV infection and after recovery. TGFB1 and TGFBR2 mRNA expression was increased in patients with EBV infection. Similarly, mRNA expression of protein kinase C (PRKCB), MAP3K7, PDLIM7, and other members of TGFB1 and NF-κB signaling pathways increased. A shift of mRNA transcript variant expression of some key members (TGFBR2, PRKCB, and NFKBIB) of involved signaling pathways was detected. After the patients' recovery, most of the altered mRNA expression has been normalized. We speculate that in patients with EBV infection, members of TGFB1-associated pathways contribute to the suppression of proapoptotic and induction of pro-survival factors in leukocytes. The modulation of TGFB1-associated pathways may be considered as a potential risk factor in the development of EBV-associated tumors in patients with acute EBV infection.
Epstein-Barr virus (EBV) and human herpesvirus type 6 (HHV6) are causative agents of infectious mononucleosis and can lead to the development of lymphoproliferative diseases. Means of radical therapy for this disease are yet to be found. Key transcripts involved in the pathogenesis can be used as molecular markers and also as potential therapeutic targets. The aim of the study was to identify molecular markers associated with infection caused by EBV and HHV6; specifically, we looked into the markers localized in blood leukocytes of patients with infectious mononucleosis. Materials and Methods. We studied the transcriptome of peripheral blood leukocytes in children and adolescents with infectious mononucleosis caused by Epstein-Barr virus (EBV-IM) and human herpesvirus type 6 (HHV6-IM), as well as healthy subjects matched by gender and age. Using our original DNA biochips, we determined the expression of 403 genes (total representation level of all mRNA of one gene) and 712 transcripts (individual spliced mRNA of one gene) essential for the proliferation and apoptosis of immunocompetent cells. Data analysis was performed using a combination of machine learning and traditional statistics. The genes and transcripts which are highly important for paired classification and have the statistically significant differences in the expression between patients and healthy subjects were selected to serve molecular markers of the infection. Results. Unique groups of candidate markers for EBV-IM and HHV6-IM were identified. EBV-IM was characterized by a decreased expression of the AR transcript 5 and ASCC1 transcript 4 and also of the CAD gene and FADD mRNA; an increased expression of the HLA-DPA1 transcript 2 and RIPK1 transcript 4 were found. In patients with HHV6-IM, an increase in the expression of AVEN mRNA, CHUK transcript 2, CIRBP transcript 2, and TRAF3 transcript 2, as well as a decrease in the expression of IRAK4 transcript 10 was observed. In the post-infection period, the expression levels of most of the markers returned to normal. Conclusion. The sets of identified markers are uniquely characteristic of the two infections (EBV-IM and HHV6-IM) and can be used as targets for new therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.