Different methods are used at Corteva® Agriscience to improve our understanding of mixing in large-scale mechanically agitated fermentors. These include (a) use of classical empirical correlations, (b) use of small-scale models, and (c) computational fluid dynamics (CFD). Each of these approaches has its own inherent strengths and limitations. Classic empirical or semi-empirical correlations can provide insights into mass transfer, blending, shear, and other important factors but are dependent on the geometry and condition used to develop the correlations. Laboratory-scale modelling can be very useful to study mixing and model the effect of heterogeneity on the culture, but success is highly dependent on the methodology applied. CFD provides an effective means to accelerate the exploration of alternative design strategies through physics-based computer simulations that may not be adequately described by existing knowledge or correlations. However, considerable time and effort is needed to build and validate these models. In this paper, we review the various approaches used at Corteva Agriscience to deepen our understanding of mixing in large-scale fermentation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.