In this paper, we study the sparsest solutions of linear complementarity problems (LCPs), which study has many applications, such as bimatrix games and portfolio selections. Mathematically, the underlying model is NP-hard in general. By transforming the complementarity constraints into a fixed point equation with projection type, we propose an l 1 regularization projection minimization model for relaxation. Through developing a thresholding representation of solutions for a key subproblem of this regularization model, we design a shrinkage-thresholding projection (STP) algorithm to solve this model and also analyze convergence of STP algorithm. Numerical results demonstrate that the STP method can efficiently solve this regularized model and get a sparsest solution of LCP with high quality. MSC: 90C33; 90C26; 90C90
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.