KRAS and BRAF mutations are frequent in colorectal carcinoma (CRC) and have the potential to activate proliferation and survival through MAPK/ERK and/or PI3K signalling pathways. Because diet is one of the most important determinants of CRC incidence and progression, we studied the effects of the dietary phytochemicals quercetin (Q), luteolin (L) and ursolic acid (UA) on cell proliferation and apoptosis in two human CRC derived cell lines, HCT15 and CO115, harboring KRAS and BRAF activating mutations, respectively. In KRAS mutated HCT15 cells, Q and L significantly decreased ERK phosphorylation, whereas in BRAF mutated CO115 cells the three compounds decreased Akt phosphorylation but had no effect on phospho-ERK. Our findings show that these natural compounds have antiproliferative and proapoptotic effects and simultaneously seem to act on KRAS and PI3K but not on BRAF. These results shed light on the molecular mechanisms of action of Q, L and UA and emphasize the potential of dietary choices for the control of CRC progression.
Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.