The gray mold caused by the phytopathogen Botrytis cinerea presents a threat to global food security. For the biological regulation of several plant diseases, Bacillus species have been extensively studied. In this work, we explore the ability of a bacterial strain, Bacillus cabrialesii BH5, that was isolated from tomato rhizosphere soil, to control the fungal pathogen B. cinerea. Strain B. cabrialesii BH5 showed a strong antifungal activity against B. cinerea. A compound was isolated and identified as a cyclic lipopeptide of the fengycin family by high-performance liquid chromatography and tandem mass spectrometry (ESI-MS/MS) that we named fengycin H. The fengycin H-treated hyphae of B. cinerea displayed stronger red fluorescence than the control, which is clearly indicating that fengycin H triggered the hyphal cell membrane defects. Moreover, root inoculation of tomato seedlings with BH5 effectively promoted the growth of tomato plants. Transcription analysis revealed that both BH5 and fengycin H stimulate induced systemic resistance of tomato plants via the jasmonic acid signaling pathway and provide a strong biocontrol effect in vivo. Therefore, the strain BH5 and fengycin H are very promising candidates for biological control of B. cinerea and the associated gray mold.
Background
Biocontrol agents are sustainable eco-friendly alternatives for chemical pesticides that cause adverse effects in the environment and toxicity in animals including humans. An improved understanding of the phyllosphere microbiology is of vital importance for biocontrol development. Most studies have been directed towards beneficial plant-microbe interactions and ignore the pathogens that might affect humans when consuming vegetables. In this study we extended this perspective and investigated potential biocontrol strains isolated from tomato and lettuce phyllosphere that can promote plant growth and potentially antagonize human pathogens as well as plant pathogens. Subsequently, we mined into their genomes for discovery of antimicrobial biosynthetic gene clusters (BGCs), that will be further characterized.
Results
The antimicrobial activity of 69 newly isolated strains from a healthy tomato and lettuce phyllosphere against several plant and human pathogens was screened. Three strains with the highest antimicrobial activity were selected and characterized (Bacillus subtilis STRP31, Bacillus velezensis SPL51, and Paenibacillus sp. PL91). All three strains showed a plant growth promotion effect on tomato and lettuce. In addition, genome mining of the selected isolates showed the presence of a large variety of biosynthetic gene clusters. A total of 35 BGCs were identified, of which several are already known, but also some putative novel ones were identified. Further analysis revealed that among the novel BGCs, one previously unidentified NRPS and two bacteriocins are encoded, the gene clusters of which were analyzed in more depth.
Conclusions
Three recently isolated strains of the Bacillus genus were identified that have high antagonistic activity against lettuce and tomato plant pathogens. Known and unknown antimicrobial BGCs were identified in these antagonistic bacterial isolates, indicating their potential to be used as biocontrol agents. Our study serves as a strong incentive for subsequent purification and characterization of novel antimicrobial compounds that are important for biocontrol.
Four strains isolated from tomato and lettuce phyllosphere were sequenced in order to investigate the presence of novel antimicrobial gene clusters and to get a better understanding of plant microbe interactions. These strains comprise two Bacillus strains, one Paenibacillus strain, and one Acinetobacter strain.
BackgroundBiocontrol agents are sustainable eco-friendly alternatives for chemical pesticides that cause adverse effects in the environment and toxicity in animals including humans. An improved understanding of the phyllosphere microbiology is of vital importance for biocontrol development. Most studies have been directed towards beneficial plant-microbe interactions and ignore the pathogens that might affect humans when consuming vegetables. In this study we extended this perspective and investigated potential biocontrol strains isolated from the tomato and lettuce phyllosphere that can promote plant growth and antagonize mammalian pathogens as well as plant pathogens. Subsequently, we mined into their genomes for discovery of antimicrobial biosynthetic gene clusters (BGCs), several of which are good candidates to produce protectants against microbial plant and mammalian pathogens.Results The antimicrobial activity of 69 newly isolated strains from a healthy tomato and lettuce phyllosphere against several plant and mammalian pathogens was determined with plates assays. Three strains with the highest antimicrobial activity against the relevant pathogens were selected and characterized (Bacillus subtilis STRP31, Bacillus velezensis SPL51, and Paenibacillus sp. PL91). All three strains showed a plant growth promotion effect by the production of volatile compounds (VOCs) on tomato and lettuce. In addition, genome mining of these isolates showed the presence of a large variety of biosynthetic gene clusters. A total of 39 BGCs were identified, of which several are already known, such as bacilysin, bacillibactin, surfactin, subtilomycin, etc., but also several novel ones. Further analysis revealed that among the novel BGCs, one NRPS and two bacteriocins are encoded which were analyzed in more depth.Conclusions Several antimicrobial BGCs were found in the selected strains, including the rediscovery of known ones, but also the discovery of novel ones. Our study serves as support for subsequent examination and characterization of novel antimicrobial metabolites, and the possibility of developing biocontrol agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.