The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.
In Saccharomyces cerevisiae the nicotinic acid moiety of NAD + can be synthesized from tryptophan using the kynurenine pathway or incorporated directly using nicotinate phosphoribosyl transferase (NPT1). We have identified the genes that encode the enzymes of the kynurenine pathway and for BNA5 (YLR231c) and BNA6 (YFR047c) confirmed that they encode kynureninase and quinolinate phosphoribosyl transferase respectively. We show that deletion of genes encoding kynurenine pathway enzymes are co-lethal with the v vnpt1, demonstrating that no other pathway for the synthesis of nicotinic acid exists in S. cerevisiae. Also, we show that under anaerobic conditions S. cerevisiae is a nicotinic acid auxotroph. ß
The HAP1 gene encodes a complex transcriptional regulator of many genes involved in electron-transfer reactions and is essential in anaerobic or heme-depleted conditions. We show here that strains derived from S288c carry a defective Ty1 element inserted in the 3' region of the HAP1 ORF. This mutant allele acts as a HAP1 null allele in terms of cytochrome c expression and CYC1 UAS1-dependent transcription, but is able to sustain limited growth in heme-depleted conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.