Background: The electrocardiographic early repolarization (ER) pattern is associated with idiopathic ventricular fibrillation and increased long-term cardiovascular mortality. Whether structural cardiac aberrations influence the phenotype is unclear. Since ER is particularly common in athletes, we evaluated its prevalence and investigated predisposing echocardiographic characteristics and cardiopulmonary exercise capacity in a cohort of elite athletes. Methods: A total of 623 elite athletes (age 21 ± 5 years) were examined during annual preparticipation screening from 2006 until 2012 including electrocardiography, echocardiography, and exercise testing. ECGs were analyzed with focus on ER. All athletes participated in a clinical follow-up.Results: The prevalence of ER was 17% (108/623). ER-positive athletes were predominantly male (71%, 77/108), showed a lower heart rate (57.1 ± 9.3 bpm versus 60.0 ± 11.2 bpm; p = 0.015) and a higher lean body mass compared to ER-negative participants (88.1% ± 5.6% versus 86.5% ± 6.3%; p = 0.015). Echocardiographic measurements and cardiopulmonary exercise capacity in male and female athletes with and without ER largely showed similar results. Only the notching ER subtype (n = 15) was associated with an increased left atrial diameter (OR 7.01, 95%CI 1.65-29.83; p = 0.008), a higher left ventricular mass (OR 1.02, 95%CI 1.00-1.03; p = 0.038) and larger relative heart volume (OR 1.01, 95%CI 1.00-1.01; p = 0.01). During a follow-up of 7.4 ± 1.5 years, no severe cardiovascular event occurred in the study sample. Conclusions:In elite athletes presence of ER is not associated with distinct alterations in echocardiography and cardiopulmonary exercise. Athletes presenting with ER are rather male, lean with a low heart rate.
Background Conventional transthoracic echocardiography (TTE) does often not accurately reveal pathologies in patients with acute myocarditis and preserved left ventricular ejection fraction (LVEEF). Therefore, we investigated the diagnostic value of two-dimensional (2D) speckle tracking echocardiography compared to late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR) imaging in patients with acute myocarditis and normal global LVEF. Methods and results 31 patients (group 1) with the diagnosis of acute myocarditis confirmed by CMR according to the Lake Louise criteria and 20 healthy controls (group 2) were analyzed including global longitudinal strain (GLS) and regional longitudinal strain (RLS) derived by the bull’s eye plot. Although preserved LVEF was present in both groups, GLS was significantly lower in patients with acute myocarditis (group 1: GLS − 19.1 ± 1.8% vs. group 2: GLS − 22.1 ± 1.7%, p < 0.001). Compared to controls, lower RLS values were detected predominantly in the lateral, inferolateral, and inferior segments in patients with acute myocarditis. Additionally RLS values were significantly lower in segments without LGE. Conclusion In patients with acute myocarditis and preserved LVEF, a significant reduction of GLS compared to healthy subjects was detected. Further RLS adds important information to the localization and extent of myocardial injury. Graphic abstract
Background and objectivesMitraClip implantation is an established therapy for secondary mitral regurgitation (MR) in high-risk patients and has shown to improve several important outcome parameters such as functional capacity. Patient selection is both challenging and crucial for achieving therapeutic success. This study investigated baseline predictors of functional improvement as it was quantified by the six-minute walk distance (6MWD) after transcatheter mitral valve repair. Methods and resultsWe retrospectively analyzed 79 patients with secondary MR treated with MitraClip implantation at an academic tertiary care center. Before and four weeks after the procedure, all patients underwent comprehensive clinical assessment, six-minute walk tests and echocardiography. 6MWD significantly improved after MitraClip therapy (295 m vs. 265 m, p < 0.001). A linear regression model including seven clinical baseline variables significantly predicted the change in 6MWD (p = 0.002, R 2 = 0.387). Female gender, diabetes mellitus and arterial hypertension were found to be significant negative predictors of 6MWD improvement. At baseline, female patients had significant higher left ventricular ejection fraction (49% vs. 42%, p = 0.019) and lower 6MWD (240 m vs. 288 m, p = 0.034) than male patients. ConclusionMitraClip implantation in secondary MR significantly improves functional capacity in highrisk patients even in the short term of four weeks after the procedure. Female gender, diabetes mellitus and arterial hypertension are baseline predictors of a less favourable functional outcome. While further validation in a larger cohort is recommended, these parameters may improve patient selection for MitraClip therapy.
Aims The aim of the current study was to evaluate whether tubular markers kidney injury molecule-1 (KIM-1) and N-acetyl-ß-glucosaminidase (NAG) are related to acute kidney injury (AKI) and severe disease in patients with COVID-19. Methods and results In this prospective observational clinical trial we examined a cohort of 80 patients with proof of acute respiratory infection and divided them into a COVID-19 cohort (n = 54) and a control cohort (n = 26). KIM-1 and NAG were measured from urine samples collected in the emergency department. We assessed the development of AKI, admission to the intensive care unit (ICU) and intrahospital death as clinical endpoints. Urinary KIM-1 and NAG were not significantly different between patients with SARS-CoV-2 and those with other respiratory infections (each p = n.s.). Eight patients from the COVID-19 cohort and five of the non-COVID-19-patients suffered from acute kidney injury during their stay. Nine COVID-19 patients and two non-COVID-19 patients were admitted to the ICU. KIM-1 was significantly elevated in COVID-19 patients with, compared to those without AKI (p = 0.005), as opposed to NAG and creatinine (each p = n.s.). Furthermore, KIM-1 was significantly elevated in the patients with COVID-19 that had to be transferred to the ICU (p = 0.015), in contrast to NAG and creatinine (each p = n.s.). Conclusion Assessing KIM-1 in patients with COVID-19 might provide additional value in recognizing AKI at an early stage of disease. Further, KIM-1 might indicate higher risk for clinical deterioration as displayed by admission to the ICU. Graphical abstract
Increased left ventricular fibrosis has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). It is unclear whether this fibrosis is a consequence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection or a risk factor for severe disease progression. We observed increased fibrosis in the left ventricular myocardium of deceased COVID-19 patients, compared with matched controls. We also detected increased mRNA levels of soluble interleukin-1 receptor-like 1 (sIL1-RL1) and transforming growth factor β1 (TGF-β1) in the left ventricular myocardium of deceased COVID-19 patients. Biochemical analysis of blood sampled from patients admitted to the emergency department (ED) with COVID-19 revealed highly elevated levels of TGF-β1 mRNA in these patients compared to controls. Left ventricular strain measured by echocardiography as a marker of pre-existing cardiac fibrosis correlated strongly with blood TGF-β1 mRNA levels and predicted disease severity in COVID-19 patients. In the left ventricular myocardium and lungs of COVID-19 patients, we found increased neuropilin-1 (NRP-1) RNA levels, which correlated strongly with the prevalence of pulmonary SARS-CoV-2 nucleocapsid. Cardiac and pulmonary fibrosis may therefore predispose these patients to increased cellular viral entry in the lung, which may explain the worse clinical outcome observed in our cohort. Our study demonstrates that patients at risk of clinical deterioration can be identified early by echocardiographic strain analysis and quantification of blood TGF-β1 mRNA performed at the time of first medical contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.