A bioassay is routinely used to determine the viral phytosanitary status of commercial grapevine propagation material in many countries around the world. That test is based on the symptoms developed in the field by specific indicator host plants that are graft-inoculated from the vines being tested. We compared the bioassay against next-generation sequencing (NGS) analysis of grapevine material. NGS is a laboratory procedure that catalogs the genomic sequences of the viruses and other pathogens extracted as DNA and RNA from infected vines. NGS analysis was found to be superior to the standard bioassay in detection of viruses of agronomic significance, including virus infections at low titers. NGS was also found to be superior to the bioassay in its comprehensiveness, the speed of its analysis, and for the discovery of novel, uncharacterized viruses.
The objectives of this study were to investigate the structure of the population of Fusarium oxysporum f. sp. fragariae in California and to evaluate methods for its detection. Fifty-nine isolates of F. oxysporum f. sp. fragariae were obtained from diseased strawberry plants and their identity was confirmed by pathogenicity testing. The full nuclear ribosomal intergenic spacer (IGS) and elongation factor 1-α gene (EF-1α) were amplified by polymerase chain reaction (PCR) and sequenced to elucidate phylogenetic relationships among isolates. IGS and EF-1α sequences revealed three main lineages, which corresponded to three somatic compatibility groups. Primers designed to detect F. oxysporum f. sp. fragariae in Japan amplified a 239-bp product from 55 of 59 California isolates of F. oxysporum f. sp. fragariae and from no nonpathogenic isolates of F. oxysporum. The sequence of this PCR product was identical to the sequence obtained from F. oxysporum f. sp. fragariae isolates in Japan. Intensive sampling at two locations in California showed results of tests based on PCR and somatic compatibility to be in agreement for 97% (257 of 264) of isolates tested. Our findings revealed considerable diversity in the California population of F. oxysporum f. sp. fragariae, and indications that horizontal gene transfer may have occurred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.