Precise measurements of the temperature and polarization anisotropies of the cosmic microwave background can be used to constrain the annihilation and decay of dark matter. In this work, we demonstrate via principal component analysis that the imprint of dark matter decay on the cosmic microwave background can be approximately parameterized by a single number for any given dark matter model. We develop a simple prescription for computing this model-dependent detectability factor, and demonstrate how this approach can be used to set model-independent bounds on a large class of decaying dark matter scenarios. We repeat our analysis for decay lifetimes shorter than the age of the universe, allowing us to set constraints on metastable species other than the dark matter decaying at early times, and decays that only liberate a tiny fraction of the dark matter mass energy. We set precise bounds and validate our principal component analysis using a Markov Chain Monte Carlo approach and Planck 2015 data.PACS numbers: 95.35.+d,98.80.Es
We present and compare several cosmological constraints on the cross section for elastic scattering between dark matter (DM) and baryons, for cross sections with a range of power-law dependences on the DM-baryon relative velocity v, especially focusing on the case of σ ∝ v −4 . We study constraints spanning a wide range of epochs in cosmological history, from prerecombination distortions to the blackbody spectrum and anisotropies of the cosmic microwave background (CMB), to modifications to the intergalactic medium temperature and the resulting 21 cm signal, and discuss the allowed signals in the latter channels given the constraints from the former. We improve previous constraints on DM-baryon scattering from the CMB anisotropies, demonstrate via principal component analysis that the effect on the CMB can be written as a simple function of DM mass for v −4 scattering, and map out the redshifts dominating this signal. We show that given high-redshift constraints on DM-baryon scattering, a v −4 scaling of the cross section for light DM would be sufficient to explain the deep 21 cm absorption trough recently claimed by the Experiment to Detect the Reionization Step, if 100% of the DM scatters with baryons; we estimate the minimal necessary velocity scaling and find that it is close to v −4 . For millicharged DM models proposed to explain the observation, where only a small fraction of the DM interacts, we estimate that a PIXIE-like future experiment measuring CMB spectral distortion could test the relevant parameter space.
A generalized framework for cumulus parameterization applicable to any horizontal resolution between those typically used in general circulation and cloud-resolving models is presented. It is pointed out that the key parameter in the generalization is σ, which is the fractional area covered by convective updrafts in the grid cell. Practically all conventional cumulus parameterizations assume σ ≪ 1, at least implicitly, using the gridpoint values of the thermodynamic variables to define the thermal structure of the cloud environment. The proposed framework, called “unified parameterization,” eliminates this assumption from the beginning, allowing a smooth transition to an explicit simulation of cloud-scale processes as the resolution increases. If clouds and the environment are horizontally homogeneous with a top-hat profile, as is widely assumed in the conventional parameterizations, it is shown that the σ dependence of the eddy transport is through a simple quadratic function. Together with a properly chosen closure, the unified parameterization determines σ for each realization of grid-scale processes. The parameterization can also provide a framework for including stochastic parameterization. The remaining issues include parameterization of the in-cloud eddy transport because of the inhomogeneous structure of clouds.
Abstract.As far as the representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs) and explicitly simulated as in the cloud-resolving models (CRMs). Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM) as the grid size is refined. This paper suggests two possible routes to achieve the unification. ROUTE I continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II follows the "multi-scale modeling framework (MMF)" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D) MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with large gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.