The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) outbreak has engulfed an unprepared world amidst a festive season. The zoonotic SARS-CoV-2, believed to have originated from infected bats, is the seventh member of enveloped RNA coronavirus. Specifically, the overall genome sequence of the SARS-CoV-2 is 96.2% identical to that of bat coronavirus termed BatCoV RaTG13. Although the current mortality rate of 2% is significantly lower than that of SARS (9.6%) and Middle East respiratory syndrome (MERS)
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CoMoS/γ-Al2O3 sorbent was prepared via incipient wetness impregnation (IWI) and sulfur-chemical vapor reaction (S-CVR) methods and tested in terms of its potential for Hg(0) capture. It was observed that the CoMoO/γ-Al2O3 showed a Hg(0) capture efficiency around 75% at a temperature between 175 and 325 °C while CoMoS/γ-Al2O3 achieved almost 100% Hg(0) removal efficiency at 50 °C. The high removal efficiency for CoMoS/γ-Al2O3 remained unchanged for 2000 min in the test. Its theoretical capacity for Hg(0) capture was found to be 18.95 mg/g based on the Elovich model. The ability of this material for Hg(0) capture is atributed to the MoS2 nanosheets coated on surface of the maro- and meso-pores of γ-Al2O3. These MoS2 are two-dimensional transition-metal dichalcogenide (2D TMDC) assembled with unsulfided cobalt atoms at the edges. It is believed that these MoS2 nanosheets provided dense active sites for Hg(0) capture. The removal of Hg(0) at low temperatures was achieved via the combination of Hg(0) with the chalcogen (S) atoms on the entire basal plane of the MoS2 nanosheets with coordinative unsaturated sites (CUS) to form a stable compound, HgS.
Photocatalysis is a promising and convenient strategy to convert solar energy into chemical energy for various fields. However, photocatalysis still suffers from low solar energy conversion efficiency. Developing state of the art photocatalysts with high efficiency and low cost is a huge challenge. Transition metal nitrides (TMNs) as a class of metallic interstitial compounds have attracted significant attention in photocatalytic applications. In fact, TMNs exhibit multifunctional properties in various photocatalytic systems. This review is the first attempt that summarizes recent research on TMNs‐based materials in various photocatalytic applications. Different roles of TMNs materials in photocatalytic systems including semiconductor active components, co‐catalysts, inter‐band excitation, and surface plasmon resonance components are systematically discussed and summarized. The fundamentals, latest progress, and emerging opportunities for further improving the performances of TMNs‐based materials for photocatalysis are also discussed. Finally, some challenges facing TMNs, and perspectives on their future that are relevant for furthering research in the area of photocatalysis are also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.