Single-walled carbon nanotubes (SWNTs) have high surface area, high adsorption ability, and nanoscale interactions. In this study, capillary columns including SWNTs, ionic liquid (IL), and IL + SWNTs for GC were prepared. The separation results showed that SWNTs possessed a wide selectivity toward alkanes, alcohols, aromatic compounds, and ketones, and a SWNT capillary column was a very useful GC column for the separation of gas samples. Coating the IL stationary phase on the SWNT capillary column, the SWNTs were able to improve chromatographic characteristic of ionic liquid. Comparing the IL coated on three graphite carbon black capillary columns, which were prepared by dynamic coating, static coating, and chemical bonding the Carbopack C with on SWNTs capillary column, the capacity factors were much higher on the SWNT column. The SEM showed that SWNTs could be bonded to the inner surface of capillary tubing, and most of them were linked end-to-end to form a layer of network structure of skeletons resulting in a high surface area, which increased the interactions between stationary phase and analytes. This is the first single-wall carbon nanotubes bonded to the fused-silica capillary tubing. In the first approach, SWNTs assist ionic liquid with enhanced chromatographic characteristic in GC. This work indicates that SWNTs make it possible to extend the application range on the newly prepared chromatographic stationary phases for GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.