Our data demonstrate that mTOR signaling is significantly dysregulated in human TLE, offering new targets for pharmacological interventions. Specifically, clinically available drugs that suppress mTORC1 without compromising mTOR2 signaling, such as rapamycin and its analogs, may represent a new group of antiepileptogenic agents in TLE patients. Ann Neurol 2018;83:311-327.
Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability.
ObjectiveTo provide a multi-atlas framework for automated hippocampus segmentation in temporal lobe epilepsy (TLE) and clinically validate the results with respect to surgical lateralization and post-surgical outcome.MethodsWe retrospectively identified 47 TLE patients who underwent surgical resection and 12 healthy controls. T1-weighted 3 T MRI scans were acquired for all subjects, and patients were identified by a neuroradiologist with regards to lateralization and degree of hippocampal sclerosis (HS). Automated segmentation was implemented through the Joint Label Fusion/Corrective Learning (JLF/CL) method. Gold standard lateralization was determined from the surgically resected side in Engel I (seizure-free) patients at the two-year timepoint. ROC curves were used to identify appropriate thresholds for hippocampal asymmetry ratios, which were then used to analyze JLF/CL lateralization.ResultsThe optimal template atlas based on subject images with varying appearances, from normal-appearing to severe HS, was demonstrated to be composed entirely of normal-appearing subjects, with good agreement between automated and manual segmentations. In applying this atlas to 26 surgically resected seizure-free patients at a two-year timepoint, JLF/CL lateralized seizure onset 92% of the time. In comparison, neuroradiology reads lateralized 65% of patients, but correctly lateralized seizure onset in these patients 100% of the time. When compared to lateralized neuroradiology reads, JLF/CL was in agreement and correctly lateralized all 17 patients. When compared to nonlateralized radiology reads, JLF/CL correctly lateralized 78% of the nine patients.SignificanceWhile a neuroradiologist's interpretation of MR imaging is a key, albeit imperfect, diagnostic tool for seizure localization in medically-refractory TLE patients, automated hippocampal segmentation may provide more efficient and accurate epileptic foci localization. These promising findings demonstrate the clinical utility of automated segmentation in the TLE MR imaging pipeline prior to surgical resection, and suggest that further investigation into JLF/CL-assisted MRI reading could improve clinical outcomes. Our JLF/CL software is publicly available at https://www.nitrc.org/projects/ashs/.
SummarySubcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug‐resistant epilepsy. We describe a patient with SBH and drug‐resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than to gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.