See Kleen and Kirsch (doi:10.1093/awx178) for a scientific commentary on this article.Cognitive deficits are common among epilepsy patients. In these patients, interictal epileptiform discharges, also termed spikes, are seen routinely on electroencephalography and believed to be associated with transient cognitive impairments. In this study, we investigated the effect of spikes on memory encoding and retrieval, taking into account the spatial distribution of spikes in relation to the seizure onset zone as well as anatomical regions of the brain. Sixty-seven patients with medication refractory epilepsy undergoing continuous intracranial electroencephalography monitoring engaged in a delayed free recall task to test short-term memory. In this task, subjects were asked to memorize and recall lists of common nouns. We quantified the effect of each spike on the probability of successful recall using a generalized logistic mixed model. We found that in patients with left lateralized seizure onset zones, spikes outside the seizure onset zone impacted memory encoding, whereas those within the seizure onset zone did not. In addition, spikes in the left inferior temporal gyrus, middle temporal gyrus, superior temporal gyrus, and fusiform gyrus during memory encoding reduced odds of recall by as much as 15% per spike. Spikes also reduced the odds of word retrieval, an effect that was stronger with spikes outside of the seizure onset zone. These results suggest that seizure onset regions are dysfunctional at baseline, and support the idea that interictal spikes disrupt cognitive processes related to the underlying tissue.
Patients with drug-resistant epilepsy often require surgery to become seizure-free. While laser ablation and implantable stimulation devices have lowered the morbidity of these procedures, seizure-free rates have not dramatically improved, particularly for patients without focal lesions. This is in part because it is often unclear where to intervene in these cases. To address this clinical need, several research groups have published methods to map epileptic networks but applying them to improve patient care remains a challenge. In this study we advance clinical translation of these methods by: (i) presenting and sharing a robust pipeline to rigorously quantify the boundaries of the resection zone and determining which intracranial EEG electrodes lie within it; (ii) validating a brain network model on a retrospective cohort of 28 patients with drug-resistant epilepsy implanted with intracranial electrodes prior to surgical resection; and (iii) sharing all neuroimaging, annotated electrophysiology, and clinical metadata to facilitate future collaboration. Our network methods accurately forecast whether patients are likely to benefit from surgical intervention based on synchronizability of intracranial EEG (area under the receiver operating characteristic curve of 0.89) and provide novel information that traditional electrographic features do not. We further report that removing synchronizing brain regions is associated with improved clinical outcome, and postulate that sparing desynchronizing regions may further be beneficial. Our findings suggest that data-driven network-based methods can identify patients likely to benefit from resective or ablative therapy, and perhaps prevent invasive interventions in those unlikely to do so.
How does the human brain’s structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural—through surgery or laser ablation—but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
Epilepsy affects 65 million people worldwide, a third of whom have seizures that are resistant to anti-epileptic medications. Some of these patients may be amenable to surgical therapy or treatment with implantable devices, but this usually requires delineation of discrete structural or functional lesion(s), which is challenging in a large percentage of these patients.Advances in neuroimaging and machine learning allow semi-automated detection of malformations of cortical development (MCDs), a common cause of drug resistant epilepsy. A frequently asked question in the field is what techniques currently exist to assist radiologists in identifying these lesions, especially subtle forms of MCDs such as focal cortical dysplasia (FCD) Type I and low grade glial tumors. Below we introduce some of the common lesions encountered in patients with epilepsy and the common imaging findings that radiologists look for in these patients. We then review and discuss the computational techniques introduced over the past 10 years for quantifying and automatically detecting these imaging findings. Due to large variations in the accuracy and implementation of these studies, specific techniques are traditionally used at individual centers, often guided by local expertise, as well as selection bias introduced by the varying prevalence of specific patient populations in different epilepsy centers. We discuss the need for a multi-institutional study that combines features from different imaging modalities as well as computational techniques to definitively assess the utility of specific automated approaches to epilepsy imaging. We conclude that sharing and comparing these different computational techniques through a common data platform provides an opportunity to rigorously test and compare the accuracy of these tools across different patient populations and geographical locations. We propose that these kinds of tools, quantitative imaging analysis methods and open data platforms for aggregating and sharing data and algorithms, can play a vital role in reducing the cost of care, the risks of invasive treatments, and improve overall outcomes for patients with epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.