Mutations in DOCK8 result in autosomal recessive Hyper-IgE syndrome with combined immunodeficiency (CID). However, the natural course of disease, long-term prognosis, and optimal therapeutic management have not yet been clearly defined. In an international retrospective survey of patients with DOCK8 mutations, focused on clinical presentation and therapeutic measures, a total of 136 patients with a median follow-up of 11.3 years (1.3-47.7) spanning 1693 patient years, were enrolled. Eczema, recurrent respiratory tract infections, allergies, abscesses, viral infections and mucocutaneous candidiasis were the most frequent clinical manifestations. Overall survival probability in this cohort [censored for hematopoietic stem cell transplantation (HSCT)] was 87 % at 10, 47 % at 20, and 33 % at 30 years of age, respectively. Event free survival was 44, 18 and 4 % at the same time points if events were defined as death, life-threatening infections, malignancy or cerebral complications such as CNS vasculitis or stroke. Malignancy was diagnosed in 23/136 (17 %) patients (11 hematological and 9 epithelial cancers, 5 other malignancies) at a median age of 12 years. Eight of these patients died from cancer. Severe, life-threatening infections were observed in 79/136 (58 %); severe non-infectious cerebral events occurred in 14/136 (10 %). Therapeutic measures included antiviral and antibacterial prophylaxis, immunoglobulin replacement and HSCT. This study provides a comprehensive evaluation of the clinical phenotype of DOCK8 deficiency in the largest cohort reported so far and demonstrates the severity of the disease with relatively poor prognosis. Early HSCT should be strongly considered as a potential curative measure.
Summary Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb) and a few related mycobacteria, is a devastating disease, killing more than a million individuals per year worldwide. However, its pathogenesis remains largely elusive, as only a small proportion of infected individuals develop clinical disease either during primary infection or during reactivation from latency or secondary infection. Subacute, hematogenous, and extrapulmonary disease tends to be more frequent in infants, children, and teenagers than in adults. Life-threatening primary TB of childhood can result from known acquired or inherited immunodeficiencies, although the vast majority of cases remain unexplained. We review here the conditions conferring a predisposition to childhood clinical diseases caused by mycobacteria, including not only M.tb but also weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria. Infections with weakly virulent mycobacteria are much rarer than TB, but the inherited and acquired immunodeficiencies underlying these infections are much better known. Their study has also provided genetic and immunological insights into childhood TB, as illustrated by the discovery of single-gene inborn errors of IFN-γ immunity underlying severe cases of TB. Novel findings are expected from ongoing and future human genetic studies of childhood TB in countries that combine a high proportion of consanguineous marriages, a high incidence of TB, and an excellent clinical care, such as Iran, Morocco, and Turkey.
Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a primary immunodeficiency, predominantly characterized by agammaglobulinemia or hypoimmunoglobulinemia, centromere instability and facial anomalies. Mutations in two genes have been discovered to cause ICF syndrome: DNMT3B and ZBTB24. To characterize the clinical features of this syndrome, as well as genotype-phenotype correlations, we compared clinical and genetic data of 44 ICF patients. Of them, 23 had mutations in DNMT3B (ICF1), 13 patients had mutations in ZBTB24 (ICF2), whereas for 8 patients, the gene defect has not yet been identified (ICFX). While at first sight these patients share the same immunological, morphological and epigenetic hallmarks of the disease, systematic evaluation of all reported informative cases shows that: (1) the humoral immunodeficiency is generally more pronounced in ICF1 patients, (2) B-and T-cell compartments are both involved in ICF1 and ICF2, (3) ICF2 patients have a significantly higher incidence of intellectual disability and (4) congenital malformations can be observed in some ICF1 and ICF2 cases. It is expected that these observations on prevalence and clinical presentation will facilitate mutation-screening strategies and help in diagnostic counseling.
Background Mutations in DOCK8 cause a combined immunodeficiency (CID) also classified as autosomal-recessive hyper-IgE syndrome (HIES). Recognizing patients with CID / HIES is of clinical importance due to a difference in prognosis and management. Objectives Define the clinical features that distinguish DOCK8 deficiency from other forms of HIES and CIDs; study the mutational spectrum of DOCK8 deficiency; and report on the frequency of specific clinical findings. Methods Eighty-two patients from 60 families with CID and the phenotype of autosomal-recessive HIES with (64 patients) and without (18 patients) DOCK8 mutations were studied. Support vector machines were used to compare clinical data from 35 patients with DOCK8 deficiency with 10 AR-HIES patients without a DOCK8 mutation and 64 patients with STAT3 mutations. Results DOCK8-deficient patients had a median IgE of 5,201 IU, high eosinophil levels of usually at least 800/µl (92% of patients), and low levels of IgM (62%). About 20% of patients were lymphopenic, mainly due to low CD4+ and CD8+ T cells. Fewer than half of the patients tested produced normal specific antibody responses to recall antigens. Bacterial (84%), viral (78%), and fungal (70%) infections were frequently observed. Skin abscesses (60%) and allergies (73%) were common clinical problems. In contrast to STAT3 deficiency, there were few pneumatoceles, bone fractures, and teething problems. Mortality was high (34%). A combination of five clinical features was helpful in distinguishing patients with DOCK8 mutations from those with STAT3 mutations. Conclusions DOCK8 deficiency is likely in patients with severe viral infections, allergies, and/or low IgM levels, who have a diagnosis of HIES plus hypereosinophilia and upper respiratory tract infections in the absence of parenchymal lung abnormalities, retained primary teeth, and minimal trauma fractures.
Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rβ1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity, and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, surprisingly, display mycobacteriosis without candidiasis. We show that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT, MAIT, and ILC3 cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ- producing CD4+ T cells, including, in particular, mycobacterium-specific Th1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Finally, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rβ2 or IL-23R deficiency, relative to IL-12Rβ1 deficiency, is, therefore, due to lower clinical penetrance. These experiments of Nature show that human IL-12 and IL-23 are both crucial for IFN-γ- dependent immunity to mycobacteria, both individually and much more so cooperatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.