The persistence and penetration of the herbicides isoproturon and chlorotoluron in an unconfined chalk aquifer has been monitored over a 4-year period through soil sampling, shallow coring and groundwater monitoring. Chlorotoluron was applied on plots as a marker compound, having never been used previously on that, or surrounding fields. The fieldsite had a 5 degree slope with soil depths of 0.5 to 1.5 m and a water table between 20 and 5 m from the soil surface. Where the water table was deepest (9-20 m below surface (mbs)) little or no positive herbicide detections were made. However, where the water table was at only 4-5 mbs, a regular pesticide signal of around 0.1 microg/l for isoproturon and chlorotoluron could be distinguished. Over the winter recharge period automatic borehole samplers revealed a series of short-lived peaks of isoproturon and chlorotoluron reaching up to 0.8 microg/l. This is consistent with a preferential flow mechanism operating at this particular part of the field. Such peaks were occurring over 2 years after the last application of these compounds. Shallow coring failed to uncover any significant pesticide pulse moving through the deep unsaturated zone matrix at the fieldsite.
The potential for the herbicides isoproturon, atrazine and mecoprop to degrade in the major UK aquifers of chalk, sandstone and limestone was studied using laboratory microcosms spiked at 100 microg litre(-1). Significant mecoprop degradation was only observed in sandstone groundwater samples. Atrazine transformation, based on the formation of metabolites, did occur in most groundwater samples, but only at a rate of 1-3% per year. A potential to degrade isoproturon was observed in groundwater samples from each of the aquifer types, with the most rapid and consistent degradation occurring at the sandstone field site. Biodegradation was confirmed by the formation of monodesmethyl- and didesmethyl-isoproturon. Isoproturon degradation potential rates obtained from the groundwater microcosms could not be correlated with either dissolved organic carbon or numbers of bacteria in the groundwater. It was noted that the ability of the groundwater at a field site to degrade a pesticide was not related to performance of the soil above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.