Breast cancer (BC) is a common cause of morbidity and mortality, particularly in women. Moreover, the discovery of diagnostic biomarkers for early BC remains a challenging task. Previously, we [ Jasbi Jasbi J. Chromatogr. B.201911052637] demonstrated a targeted metabolic profiling approach capable of identifying metabolite marker candidates that could enable highly sensitive and specific detection of BC. However, the coverage of this targeted method was limited and exhibited suboptimal classification of early BC (EBC). To expand the metabolome coverage and articulate a better panel of metabolites or mass spectral features for classification of EBC, we evaluated untargeted liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) data, both individually as well as in conjunction with previously published targeted LC-triple quadruple (QQQ)-MS data. Variable importance in projection scores were used to refine the biomarker panel, whereas orthogonal partial least squares-discriminant analysis was used to operationalize the enhanced biomarker panel for early diagnosis. In this approach, 33 altered metabolites/features were detected by LC-QTOF-MS from 124 BC patients and 86 healthy controls. For EBC diagnosis, significance testing and analysis of the area under receiver operating characteristic (AUROC) curve identified six metabolites/features [ethyl (R)-3-hydroxyhexanoate; caprylic acid; hypoxanthine; and m/z 358.0018, 354.0053, and 356.0037] with p < 0.05 and AUROC > 0.7. These metabolites informed the construction of EBC diagnostic models; evaluation of model performance for the prediction of EBC showed an AUROC = 0.938 (95% CI: 0.895–0.975), with sensitivity = 0.90 when specificity = 0.90. Using the combined untargeted and targeted data set, eight metabolic pathways of potential biological relevance were indicated to be significantly altered as a result of EBC. Metabolic pathway analysis showed fatty acid and aminoacyl-tRNA biosynthesis as well as inositol phosphate metabolism to be most impacted in response to the disease. The combination of untargeted and targeted metabolomics platforms has provided a highly predictive and accurate method for BC and EBC diagnosis from plasma samples. Furthermore, such a complementary approach yielded critical information regarding potential pathogenic mechanisms underlying EBC that, although critical to improved prognosis and enhanced survival, are understudied in the current literature. All mass spectrometry data and deidentified subject metadata analyzed in this study have been deposited to Mendeley Data and are publicly available (DOI: ).
Targeted mass spectrometry (MS) is an important measurement approach in metabolomics with strong analytical performance, given its specificity, sensitivity, and quantitative capacity. However, traditional targeted-MS relies heavily on chemical standards for the development of various detection panels; thus, its metabolite coverage is often limited to those well-known and commercially available compounds. To address this fundamental gap, we previously developed a novel approach [Anal. Chem.2015871235512362], globally optimized targeted (GOT)-MS, which enables reliable metabolic analysis with broad coverage using a single triple quadrupole instrument. In the present study, we further developed and optimized an innovative targeted MS approach, database-assisted globally optimized targeted (dGOT)-MS, which utilizes the HMDB and METLIN databases to significantly improve both identification and metabolite coverage. As it is well-known, these metabolomics databases have a comprehensive collection of metabolites and their tandem MS spectra; therefore, in this study, multiple reaction monitoring transitions (MRMs) were directly obtained from the databases and, after optimizing MS parameters for those MRMs, 927 metabolites were measured from a plasma aqueous extract sample with high reliability by dGOT-MS. Of these, 310 were confirmed using pure chemical standards while the rest were annotated by identification level using database entries. Furthermore, using breast cancer diagnosis as a proof-of-principle metabolomics application, we showed dGOT-MS to significantly outperform a traditional large-scale targeted MS assay for potential biomarker discovery. In principle, dGOT-MS is able to cover all metabolites (including lipids) that have been characterized in these comprehensive metabolomics databases from various types of biological samples. Therefore, dGOT-MS opens a novel avenue for MS measurements and may play an important role in many future metabolomics studies.
Whether insects can or cannot distinguish colors is a matter of much theoretical importance, for the correct interpretation of the relation of insects to flowers depends upon this answer. Most students of natural selection believed, at one time, that the forms and colors of flowers were adaptations to insect visitors. Lately there has been a reaction based on the general consensus of opinion, among morphological entomologists, concerning the poorness of insect vision. Kellogg1 writes: â€oe¿ The fixed short focal distance, the incompleteness and lack of detail incident to a mosaic image, and the lack of accommodation (only partly pro vided for by the shifting of the peripheral pigment) to varying light intensity, which are admitted conditions of insect vision, make it seem difficult to account for the intricacy in pattern common to many flowers on a basis of adaptation to animal visitors of such poor seeing capacity as insects. â€oe¿ Experitnental evidence touching this criticism is singularly meager when one considers the importance of the subject. If insects can accurately distinguish colors, and at some distance, and can perceive the fine details of color-pattern at a very short distance, then the explanation of floral structuie and pattern as adaptation to insect visitors has solid foundation for even the amazingly large and varied results which it attempts to explain; if not, it is hard to understand how the explanation is valid (at
Metabolic flux analysis (MFA) is highly relevant to understanding metabolic mechanisms of various biological processes. While the pace of methodology development in MFA has been rapid, a major challenge the field continues to witness is limited metabolite coverage, often restricted to a small to moderate number of well-known compounds. In addition, isotopic peaks from an enriched metabolite tend to have low abundances, which makes liquid chromatography tandem mass spectrometry (LC-MS/MS) highly useful in MFA due to its high sensitivity and specificity. Previously we have built large-scale LC-MS/MS approaches that can be routinely used for measurement of up to ∼1,900 metabolite/feature levels [Anal. Chem.2015871235512362. Anal. Chem.2019911373713745.]. In this study, we aim to expand our previous studies focused on metabolite level measurements to flux analysis and establish a novel comprehensive isotopic targeted mass spectrometry (CIT-MS) method for reliable MFA analysis with broad coverage. As a proof-of-principle, we have applied CIT-MS to compare the steady-state enrichment of metabolites between Myc(oncogene)-On and Myc-Off Tet21N human neuroblastoma cells cultured with U-13C6-glucose medium. CIT-MS is operationalized using multiple reaction monitoring (MRM) mode and is able to perform MFA of 310 identified metabolites (142 reliably detected, 46 kinetically profiled) selected from >35 metabolic pathways of strong biological significance. Further, we developed a novel concept of relative flux, which eliminates the requirement of absolute quantitation in traditional MFA and thus enables comparative MFA under the pseudosteady state. As a result, CIT-MS was shown to possess the advantages of broad coverage, easy implementation, fast throughput, and more importantly, high fidelity and accuracy in MFA. In principle, CIT-MS can be easily adapted to track the flux of other labeled tracers (such as 15N-tracers) in any metabolite detectable by LC-MS/MS and in various biological models (such as mice). Therefore, CIT-MS has great potential to bring new insights to both basic and clinical metabolism research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.