By adopting the concept of modularity, this paper introduced an optimal framework which facilitates life cycle assessment and life cycle cost assessment, thereby supporting rapid and reliable decision-making in the marine industry. The benefits of the proposed framework were discussed through two case studies where the optimal configurations of marine propulsion systems were determined from the economic and environmental perspectives. First, the performance of a short-route ferry using the hybrid system was compared with those of equivalent ships using diesel-electric and diesel-mechanical propulsion systems respectively. Research findings revealed the excellence of the hybrid system in both economic and environmental aspects. Second, the same method was applied to an offshore tug vessel to determine an optimal engine configuration. Results of analysis emphasised that the selection of multiple small-sized engines is more effective than two medium-sized engines. Both studies have proven that the proposed framework would be useful and practical for accelerating the life cycle analysis which allows ship designers and owners to obtain the long-term view of economic and environmental impacts for particular products or systems without demanding process. The paper also opened up the possibility of extending the application of the proposed framework to the areas where proper decision-making is essential but under-used.
With increasing interests in using LNG as a marine fuel, safety issues for LNG bunkering have brought about global discussion on establishing a safety exclusion zone around LNG bunkering areas. However, international consensus has yet to be reached in determining an appropriate extent of the zone to ensure safe liquefied natural gas (LNG) bunkering. The purpose of this study is to identify potential risks of LNG bunkering and to present a statistical method for determining the safe exclusion zone around LNG bunkering station with the help of a purpose-built computer program, integrated quantitative risk assessment (IQRA). A probabilistic risk assessment approach was adopted in this study to determine the safety exclusion zone for two case ships: one, a 300,000 DWT very large ore carrier (VLOC) and the other a 32,000 DWT bulk carrier. The results are then compared with those obtained by a deterministic approach and the discrepancies are discussed. It was found from this study that the frequency of bunkering is one of the key factors in determining the extent of safety exclusion zone. Thus, a somewhat surprising result of 36 m radius safety exclusion zone for the 32,000 DWT bulk carrier compared to 6.4 m radius for the 300,000 DWT VLOC was obtained. It was also found that the deterministic approach produced a much more extensive safety exclusion zone for the 300,000 DWT VLOC subjected to infrequent large-scale LNG bunkering operations compared to the probabilistic approach, while it was reasonably consistent with the probabilistic approach for the 32,000 DWT bulk carrier which uses frequent small-scale bunkering
The paper introduces a new decision-making process which is used to compare the performance of a ship with either diesel electric hybrid propulsion or conventional propulsion systems. A case study was carried out to compare the performance of both propulsions from cost, environmental and risk perspectives. This paper also overviews the modern approaches of multi-criteria decision-making and highlights some of their shortcomings in particular the fact that these approaches often rely on different criteria such as financial, environmental or risk. This paper aims to overcome this shortcoming by enhancing the process of multi-criteria decision analysis. The key process in this research was to convert all incomparable values into monetary values, thereby enabling the impacts of each criterion to be compared and integrated in a straightforward manner. Results of the case study showed that the use of a hybrid propulsion system could reduce annual operational costs by $ 300,000 (2 % total cost) compared with a diesel electric system and almost $ 1 million (7 %) compared to a diesel *Revised Manuscript with No Changes Marked mechanical propulsion system. In order to investigate the optimal use of the hybrid propulsion system, various operational scenarios were identified and applied to the proposed decision-making process. The results showed that operating the ship in hybrid mode during manoeuvring and berthing is more desirable as the holistic cost can reduce in almost $ 1 million. The advantages of the proposed decision making process was illustrated by comparing the results obtained from a conventional decision-making process using the analytical hierarchical method. It is believed that the research findings not only present general understanding of the possible advantages of hybrid propulsion for stakeholders, but provide them with an insight into the enhanced approach into the multi-criteria decision analysis.
11This paper was to investigate the potential benefits of solar panel systems if applied for 12 obtaining propulsion power of a short route ferry operating in the Marmara Sea. The life cycle 13 assessment was applied to evaluate the long-term environmental impact of the solar power 14 systems on-board in replace of conventional diesel engine systems. The cost and benefit of 15 such systems were evaluated through the economic assessment where the life cycle cost relative 16 to installation, operation and recycling of the solar panels, fuel savings and payback time were 17 considered. Research findings revealed the payback time would be around three years, whereas 18 the accumulative fuel cost saving would be over $300,000 by the end of vessel life. The 19 sensitivity analysis using two varying parameters -energy efficiency and investment cost -20 implied, that the longer payback time would be positively associated with lower energy 21 2 efficiencies and higher investment costs. It was also suggested that the marginal cost of the 22 carbon credit should be $ 190 per tonne or higher to make the shipping business successful. 23
This research was focused on a comparative analysis of using LNG as a marine fuel with a conventional marine gas oil (MGO) from an environmental point of view. A case study was performed using a 50K bulk carrier engaged in domestic services in South Korea. Considering the energy exporting market for South Korea, the fuel supply chain was designed with the two largest suppliers: Middle East (LNG-Qatar/MGO-Saudi Arabia) and U.S. The life cycle of each fuel type was categorized into three stages: Well-to-Tank (WtT), Tank-to-Wake (TtW), and Well-to-Wake (WtW). With the process modelling, the environmental impact of each stage was analyzed based on the five environmental impact categorizes: Global Warming Potential (GWP), Acidification Potential (AP), Photochemical Potential (POCP), Eutrophication Potential (EP) and Particulate Matter (PM). Analysis results reveal that emission levels for the LNG cases are significantly lower than the MGO cases in all potential impact categories. Particularly, Case 1 (LNG import to Korea from Qatar) is identified as the best option as producing the lowest emission levels per 1.0 × 107 MJ of fuel consumption: 977 tonnages of CO2 equivalent (for GWP), 1.76 tonnages of SO2 equivalent (for AP), 1.18 tonnages of N equivalent (for EP), 4.28 tonnages of NMVOC equivalent (for POCP) and 26 kg of PM 2.5 equivalent (for PM). On the other hand, the results also point out that the selection of the fuel supply routes could be an important factor contributing to emission levels since longer distances for freight transportation result in more emissions. It is worth noting that the life cycle assessment can offer us better understanding of holistic emission levels contributed by marine fuels from the cradle to the grave, which are highly believed to remedy the shortcomings of current marine emission indicators.
With strong environmental and economic driving forces for using LNG as a marine fuel over the last decade, an increasing number of local/international ports, mainly in Europe, have initiated LNG fuel providing service to LNG-fuelled ships. This trend is now spreading throughout the world. The LNG bunkering methods currently in use are truck-to-ship (TTS), ship-to-ship (STS) and pipeline-to-ship (PTS). This paper describes a study conducted to identify potential risks associated with LNG bunkering with particular emphasis on the fuel-supplying side. A series of parametric analyses were also carried out to identify the sensitivity to some parameters with the aid of a purpose-built computer program, Integrated Quantitative Risk Assessment (IQRA). Through the parametric analyses, general relationships between the risk and various parameters could be established from which the importance of the selected parameters might be evaluated. This paper also proposes a new approach of establishing realistic safety exclusion zones in LNG bunkering process. Research findings demonstrate that the implied hypothesis that the current practice of the probabilistic risk assessment focused on the populationindependent analysis only is somewhat inadequate when applied to determining the safety exclusion zones as showing that the extent of safety exclusion zones tends to be set up unpractically wide. Instead, the proposed approach designed with the combination of population-dependant and independent analyses is proven to be useful in determining the zones more realistically. It may form a basis on which more useful safety-related standards and regulations on LNG bunkering can be built.
The paper aims to investigate the holistic environmental benefits of using a battery system on a roll on/roll off (ro-ro) passenger ship which was originally fitted with a diesel engine engaged in Korean coastal service. The process of this research has multiple layers. First, the operating profiles of the case ship were collected, such as speed, output, operation time and the configuration of the diesel propulsion system. Second, the full battery propulsion system, in place of the diesel system, was modelled and simulated on a power simulation software (PSIM) platform to verify the adequacy of the proposed battery propulsion system. Then, the life cycle assessment method was applied to comprehensively compare the environmental footprint of the diesel-mechanical and fully battery-powered vessels. A focus was placed on the life cycle of the energy sources consumed by the case ship in consideration of the South Korea’s current energy importation and production status. Three life cycle stages were considered in the analysis: ‘production’, ‘transport’ and ‘use’. With the aid of Sphera GaBi Software Version 2019 and its extensive data library, the environmental impacts at the energy production and transport stages were evaluated, while the same impacts at the use stage were determined based on actual laboratory measurements. The environmental performance of the two scenarios in four impact categories was discussed: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP) and photochemical ozone creation potential (POCP). Results of the comparative analysis are presented based on estimates of the overall reduction in the environmental impact potential, thereby demonstrating the overall benefits of using a battery driven propulsion, with a decrease of the GWP by 35.7%, the AP by 77.6%, the EP by 87.8% and the POCP by 77.2%. A series of sensitivity analyses, however, has delivered the important message that the integration of batteries with marine transportation means may not always be the best solution. The types of energy sources used for electricity generation will be a key factor in determining whether the battery technology can ultimately contribute to cleaner shipping or not. By casting doubts on the benefits of battery propulsion, this paper is believed to offer a meaningful insight into developing a proper road map for electrifying ship propulsion toward zero emission of shipping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.