Objective: Cefepime is used to treat severe infections in neonates. Pharmacokinetic data have only been evaluated among preterm neonates and population pharmacokinetic model lacked external validation. Hence, our aim is to obtain the population pharmacokinetic parameters of cefepime with large sampling and optimize the cefepime dosage regimen for neonatal infection based on developmental pharmacokinetics-pharmacodynamics.Methods: Blood samples from neonates and young infants treated with cefepime were collected using the opportunistic sampling design. The concentration of cefepime was determined using high performance liquid chromatography with ultraviolet detection. The population pharmacokinetic model was established using NONMEM software.
Results:One hundred blood samples from eighty-five neonates were analyzed. The population pharmacokinetics of cefepime were described by a one-compartment model with first-order elimination. Covariate analysis indicated that serum creatinine concentration, postmenstrual age and current weight had significant impact on the pharmacokinetic parameters of cefepime. Monte Carlo simulation results showed that the current dosage regimen (30 mg/kg, q12 h) had a high risk of insufficient dose. For 70% of neonates to obtain a higher free drug concentration than the minimum inhibitory concentration during 70% of the dosing interval, 50 mg/kg q12 h was needed with a susceptibility breakpoint of 4 mg/l. For a minimum inhibitory concentration of 8 mg/l, 40 mg/kg q8 h was recommended for all neonates.Conclusion: A population pharmacokinetic model of cefepime in neonates and young infants was established. According to simulation results based on the developmental Frontiers in Pharmacology | www.frontiersin.org
Objectives
Nowadays, real-world data can be used to improve currently available dosing guidelines and to support regulatory approval of drugs for use in neonates by overcoming practical and ethical hurdles. This proof-of-concept study aimed to assess the population pharmacokinetics of azlocillin in neonates using real-world data, to make subsequent dose recommendations and to test these in neonates with early-onset sepsis (EOS).
Methods
This prospective, open-label, investigator-initiated study of azlocillin in neonates with EOS was conducted using an adaptive two-step design. First, a maturational pharmacokinetic-pharmacodynamic model of azlocillin was developed, using an empirical dosing regimen combined with opportunistic samples resulting from waste material. Second, a Phase II clinical trial (ClinicalTrials.gov: NCT03932123) of this newly developed model-based dosing regimen of azlocillin was conducted to assure optimized target attainment [free drug concentration above MIC during 70% of the dosing interval (‘70% fT>MIC’)] and to investigate the tolerance and safety in neonates.
Results
A one-compartment model with first-order elimination, using 167 azlocillin concentrations from 95 neonates (31.7–41.6 weeks postmenstrual age), incorporating current weight and renal maturation, fitted the data best. For the second step, 45 neonates (30.3–41.3 weeks postmenstrual age) were subsequently included to investigate target attainment, tolerance and safety of the pharmacokinetic-pharmacodynamic model-based dose regimen (100 mg/kg q8h). Forty-three (95.6%) neonates reached their pharmacokinetic target and only two neonates experienced adverse events (feeding intolerance and abnormal liver function), possibly related to azlocillin.
Conclusions
Target attainment, tolerance and safety of azlocillin was shown in neonates with EOS using a pharmacokinetic-pharmacodynamic model developed with real-world data.
Objective
This study aimed to explore the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration (PKAN).
Methods
A single-arm, open-label study was conducted. All subjects received pantethine during the 24-week period of treatment. The primary endpoints were change of the Unified Parkinson’s Disease Rating Scale (UPDRS) I–III and Fahn–Marsden (FM) score from baseline to week 24 after treatment.
Results
Fifteen children with PKAN were enrolled, and all patients completed the study. After 24 weeks of treatment with pantethine at 60 mg/kg per day, there was no difference in either UPDRS I–III (t = 0.516, P = 0.614) or FM score (t = 0.353, P = 0.729) between the baseline and W24. Whereas the rates of increase in UPDRS I-III (Z = 2.614, p = 0.009) and FM scores (Z = 2.643, p = 0.008) were slowed. Four patients (26.7%) were evaluated as “slightly improved” by doctors through blinded video assessment. Patients with lower baseline UPDRS I–III or FM scores were more likely to be improved. The quality of life of family members improved after pantethine treatment, evaluated by PedsQL TM 2.0 FIM scores, whereas the quality of life of the patients was unchanged at W24, evaluated by PedsQL TM 4.0 and PedsQL TM 3.0 NMM. Serum level of CoA was comparable between baseline and W24. There was no drug related adverse event during the study.
Conclusions
Pantethine could not significantly improve motor function in children with PKAN after 24 weeks treatment, but it may delay the progression of motor dysfunction in our study. Pantethine was well-tolerated at 60 mg/kg per day.
Trial registration
Clinical trial registration number at www.chictr.org.cn:ChiCTR1900021076, Registered 27 January2019, the first participant was enrolled 30 September 2018, and other 14 participants were enrolled after the trial was registered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.