The capacity of D1 and D2 agonists and antagonists to regulate the in vivo release and metabolism of dopamine (DA) in mesolimbic and nigrostriatal DA neurons of the mouse was determined using gas chromatographic and mass fragmentographic (GC-MF) analysis. DA release was inferred from levels of 3-methoxytyramine (3-MT) and DA metabolism was inferred from levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). DA release was increased by the D2 antagonists haloperidol and metoclopramide but not by the D1 antagonists SCH 23390 and SKF 83566. DA metabolism was increased by each of the four antagonists but to a greater extent with the D2 antagonists. The D2 agonists CGS 15855A and LY 171555 decreased DA release whereas the D1 agonist SKF 38393, at relatively high doses, only slightly affected DA release. Each of the three agonists decreased DA metabolism but again metabolism was more affected by the D2-selective drugs. The in vivo release of DA from mesolimbic and neostriatal DA neurons appears to be modulated by D2 but not by D1 receptors, whereas both receptor types can modulate DA metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.