Microdeletions of a region termed the "imprinting center" (IC) in chromosome 15q11-q13 have been identified in several families with Prader-Willi syndrome (PWS) or Angelman syndrome who show epigenetic inheritance for this region that is consistent with a mutation in the imprinting process. The IC controls resetting of parental imprints in 15q11-q13 during gametogenesis. We have identified a larger series of cases of familial PWS, including one case with a deletion of only 7.5 kb, that narrows the PWS critical region to <4. 3 kb spanning the SNRPN gene CpG island and exon 1. Identification of a strong DNase I hypersensitive site, specific for the paternal allele, and six evolutionarily conserved (human-mouse) sequences that are potential transcription-factor binding sites is consistent with this region defining the SNRPN gene promoter. These findings suggest that promoter elements at SNRPN play a key role in the initiation of imprint switching during spermatogenesis. We also identified three patients with sporadic PWS who have an imprinting mutation (IM) and no detectable mutation in the IC. An inherited 15q11-q13 mutation or a trans-factor gene mutation are unlikely; thus, the disease in these patients may arise from a developmental or stochastic failure to switch the maternal-to-paternal imprint during parental spermatogenesis. These studies allow a better understanding of a novel mechanism of human disease, since the epigenetic effect of an IM in the parental germ line determines the phenotypic effect in the patient.
Telomere DNA, at the ends of each chromosome, is conserved in nature and required for chromosome replication and stability. Reduction in telomere length has been observed in several malignancies as well as in leukocytes from healthy persons with advancing age. There is a paucity of data regarding telomere length and the effects of in vivo aging in different tissues. These data could be helpful in interpreting telomere length and understanding the role of telomere integrity and telomerase activity in malignant cells. We report telomeric DNA integrity studies of blood and skin collected from eight Caucasians of both sexes representing each decade of life from the fetus to 72 years of age without exposure to chemotherapy or radiation. In addition, telomeric data from 15 other tissues from the fetus and 8 other tissues from the 72-year-old male were examined. No significant differences were found in the shortest telomere size, the average telomere size, or telomere size variation between blood and skin from subjects at different ages. The average telomere size was 11.7 +/- 2.2 kb for blood and 12.8 +/- 3.7 for skin in all subjects studied. The shortest telomere length was 5.4 +/- 1.9 kb for blood and 4.3 +/- 0.9 kb for skin. Significant differences (P < 0.001) were found in the overall length of the DNA hybridization signal representing the shortest telomere size and the length of the DNA peak migration hybridization signal representing variation in telomere size between the 20-week fetus and the 72-year-old male. The 72-year-old male showed the shortest telomeres and the most variation (heterogeneity) in telomere size for all tissues studied, but the greatest differences were observed in blood compared with other tissues (e.g., average telomere length was 12.2 kb in the fetus and 7.2 kb in the 72-year-old male). The size of the telomere was negatively correlated with age for all tissues studied.
B burgdorferi can invade the CNS early in the course of infection. Careful consideration should be given to choosing antibiotics that achieve adequate CSF levels in patients with disseminated infection.
SUMMARYThe rale of clearance of exiracellular plasma DNA in man ha.s importani inipiitalions for palhogenelie mechanisms in systemic lupus erythemalosus (SLE), as well as for eeriain oihcr clinical states. Present knowledge of this parameter is derived exelusively from studies of injected, naked DNA in animals. Recent informalion indicates that the physiologic form of plasma DNA in SLE is that of oligonucleosome-like molecules rather than of naked DNA and eonsists of multimcric complexes of DNA bound to histone, probably arising from an apoplotic process. In order to study the rale at which ihese oligonucleosome-like complexes are removed from plasma and to do so in man rather than experimental animals, we exploited the observation that during haemodialysis large amounts of DNA are released, apparently within the dialysis coil, inlo the paiieni's plasma. Since this release appears lo cease promptly with termination of the procedure, it offered the potential for estimating the rate of removal of such DNA from human plasma. Moreover, if that DNA. as postulated, were shown to possess an oligonucleosome-like structure resembling that fotind endogenously in human SLE, the relevance of such information to the human disease state would be further enhanced. The present results support the conclusion that DNA released into plasma during haemodialysis possesses such an oligonucleosome-like structure. The plasma half-life of ihat DNA in man was found nol lo exceed 4 min. The highly dynamic state thus implied for extracellular endogenous plasma DNA in man has important implications for pathogenetic mechanisms dependent on dsDNA in SLE. Moreover, individuals undergoing chronic hacmodialysi,s, who are thereby exposed to a very large cumulative amount of such DNA., might serve as models for studying its long-term sequelae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.